Lüken Malte, Kucharský Šimon, Visser Ingmar
Department of Psychology, University of Amsterdam, The Netherlands.
These authors contributed equally.
J Eye Mov Res. 2022 Jun 28;15(1). doi: 10.16910/jemr.15.1.4. eCollection 2022.
Eye-tracking allows researchers to infer cognitive processes from eye movements that are classified into distinct events. Parsing the events is typically done by algorithms. Here we aim at developing an unsupervised, generative model that can be fitted to eye-movement data using maximum likelihood estimation. This approach allows hypothesis testing about fitted models, next to being a method for classification. We developed gazeHMM, an algorithm that uses a hidden Markov model as a generative model, has few critical parameters to be set by users, and does not require human coded data as input. The algorithm classifies gaze data into fixations, saccades, and optionally postsaccadic oscillations and smooth pursuits. We evaluated gazeHMM's performance in a simulation study, showing that it successfully recovered hidden Markov model parameters and hidden states. Parameters were less well recovered when we included a smooth pursuit state and/or added even small noise to simulated data. We applied generative models with different numbers of events to benchmark data. Comparing them indicated that hidden Markov models with more events than expected had most likely generated the data. We also applied the full algorithm to benchmark data and assessed its similarity to human coding and other algorithms. For static stimuli, gazeHMM showed high similarity and outperformed other algorithms in this regard. For dynamic stimuli, gazeHMM tended to rapidly switch between fixations and smooth pursuits but still displayed higher similarity than most other algorithms. Concluding that gazeHMM can be used in practice, we recommend parsing smooth pursuits only for exploratory purposes. Future hidden Markov model algorithms could use covariates to better capture eye movement processes and explicitly model event durations to classify smooth pursuits more accurately.
眼动追踪使研究人员能够从被分类为不同事件的眼动中推断认知过程。事件解析通常由算法完成。在这里,我们旨在开发一种无监督的生成模型,该模型可以使用最大似然估计拟合到眼动数据。这种方法除了作为一种分类方法外,还允许对拟合模型进行假设检验。我们开发了gazeHMM算法,它使用隐马尔可夫模型作为生成模型,用户需要设置的关键参数很少,并且不需要人工编码数据作为输入。该算法将注视数据分类为注视、扫视,以及可选的扫视后振荡和平稳跟踪。我们在一项模拟研究中评估了gazeHMM的性能,结果表明它成功地恢复了隐马尔可夫模型参数和隐藏状态。当我们纳入平稳跟踪状态和/或向模拟数据中添加即使很小的噪声时,参数的恢复效果较差。我们将具有不同事件数量的生成模型应用于基准数据。对它们进行比较表明,具有比预期更多事件的隐马尔可夫模型最有可能生成了这些数据。我们还将完整算法应用于基准数据,并评估其与人工编码和其他算法的相似性。对于静态刺激,gazeHMM显示出高度相似性,并且在这方面优于其他算法。对于动态刺激,gazeHMM倾向于在注视和平稳跟踪之间快速切换,但仍然比大多数其他算法显示出更高相似性。我们得出结论,gazeHMM可以在实践中使用,建议仅出于探索目的解析平稳跟踪。未来的隐马尔可夫模型算法可以使用协变量来更好地捕捉眼动过程,并明确地对事件持续时间进行建模,以更准确地分类平稳跟踪。