Herrera Andrea, Muñoz Patricia, Steinbusch Harry W M, Segura-Aguilar Juan
Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile , Santiago, Chile.
Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University , 6211 LK Maastricht, The Netherlands.
ACS Chem Neurosci. 2017 Apr 19;8(4):702-711. doi: 10.1021/acschemneuro.7b00034. Epub 2017 Mar 3.
In 1967, L-dopa was introduced as part of the pharmacological therapy of Parkinson's disease (PD) and, in spite of extensive research, no additional effective drugs have been discovered to treat PD. This brings forward the question: why have no new drugs been developed? We consider that one of the problems preventing the discovery of new drugs is that we still have no information on the pathophysiology of the neurodegeneration of the neuromelanin-containing nigrostriatal dopaminergic neurons. Currently, it is widely accepted that the degeneration of dopaminergic neurons, i.e., in the substantia nigra pars compacta, involves mitochondrial dysfunction, the formation of neurotoxic oligomers of alpha-synuclein, the dysfunction of protein degradation systems, neuroinflammation, and oxidative and endoplasmic reticulum stress. However, the initial trigger of these mechanisms in the nigrostriatal system is still unknown. It has been reported that aminochrome induces the majority of these mechanisms involved in the neurodegeneration process. Aminochrome is formed within the cytoplasm of neuromelanin-containing dopaminergic neurons during the oxidation of dopamine to neuromelanin. The oxidation of dopamine to neuromelanin is a normal and harmless process, because healthy individuals have intact neuromelanin-containing dopaminergic neurons. Interestingly, aminochrome-induced neurotoxicity is prevented by two enzymes: DT-diaphorase and glutathione transferase M2-2, which explains why melanin-containing dopaminergic neurons are intact in healthy human brains.
1967年,左旋多巴被引入作为帕金森病(PD)药物治疗的一部分,尽管进行了广泛研究,但尚未发现其他有效的治疗PD的药物。这就提出了一个问题:为什么没有开发出新的药物?我们认为,阻碍新药发现的问题之一是,我们仍然不了解含神经黑色素的黑质纹状体多巴胺能神经元神经变性的病理生理学。目前,人们普遍认为多巴胺能神经元的变性,即在黑质致密部,涉及线粒体功能障碍、α-突触核蛋白神经毒性寡聚体的形成、蛋白质降解系统功能障碍、神经炎症以及氧化应激和内质网应激。然而,黑质纹状体系统中这些机制的初始触发因素仍然未知。据报道,氨基色素诱导了神经变性过程中涉及的大多数这些机制。氨基色素是在多巴胺氧化为神经黑色素的过程中,在含神经黑色素的多巴胺能神经元的细胞质内形成的。多巴胺氧化为神经黑色素是一个正常且无害的过程,因为健康个体具有完整的含神经黑色素的多巴胺能神经元。有趣的是,两种酶——DT-黄递酶和谷胱甘肽转移酶M2-2可预防氨基色素诱导的神经毒性,这就解释了为什么含黑色素的多巴胺能神经元在健康人脑中是完整的。