Peter Grünberg Institute 9 and JARA-FIT, Forschungszentrum Jülich GmbH , Wilhelm Johnen Strasse, 52425 Jülich, Germany.
Department of Physics, University of Paderborn , Warburger Strasse 100, 33098 Paderborn, Germany.
ACS Appl Mater Interfaces. 2017 Mar 8;9(9):8371-8377. doi: 10.1021/acsami.6b15824. Epub 2017 Feb 24.
The lattice mismatch between CdSe and ZnSe is known to limit the thickness of ZnSe/CdSe quantum wells on GaAs (001) substrates to about 2-3 monolayers. We demonstrate that this thickness can be enhanced significantly by using InGaAs pseudo substrates, which generate alternating tensile and compressive strains in the ZnSe/CdSe/ZnSe layers resulting in an efficient strain compensation. This method enables to design CdSe/ZnSe quantum wells with CdSe thicknesses ranging from 1 to 6 monolayers, covering the whole visible spectrum. The strain compensation effect is investigated by high resolution transmission electron microscopy and supported by molecular statics simulations. The model approach with the supporting experimental measurements is sufficiently general to be also applied to other highly mismatched material combinations for the design of advanced strained heterostructures.
众所周知,CdSe 和 ZnSe 之间的晶格失配限制了 GaAs(001)衬底上 ZnSe/CdSe 量子阱的厚度约为 2-3 单层。我们证明,通过使用 InGaAs 伪衬底可以显著增强这种厚度,InGaAs 伪衬底在 ZnSe/CdSe/ZnSe 层中产生交替的拉伸和压缩应变,从而实现有效的应变补偿。这种方法可以设计 CdSe/ZnSe 量子阱,其 CdSe 厚度范围从 1 到 6 单层,覆盖整个可见光谱。高分辨率透射电子显微镜研究了应变补偿效应,并通过分子静力学模拟得到了支持。该模型方法以及支持的实验测量结果具有足够的通用性,也可应用于其他高度失配的材料组合,用于设计先进的应变异质结构。