Robens Carsten, Zopes Jonathan, Alt Wolfgang, Brakhane Stefan, Meschede Dieter, Alberti Andrea
Institut für Angewandte Physik, Universität Bonn, Wegelerstrasse 8, D-53115 Bonn, Germany.
Phys Rev Lett. 2017 Feb 10;118(6):065302. doi: 10.1103/PhysRevLett.118.065302. Epub 2017 Feb 8.
We create low-entropy states of neutral atoms by utilizing a conceptually new optical-lattice technique that relies on a high-precision, high-bandwidth synthesis of light polarization. Polarization-synthesized optical lattices provide two fully controllable optical lattice potentials, each of them confining only atoms in either one of the two long-lived hyperfine states. By employing one lattice as the storage register and the other one as the shift register, we provide a proof of concept using four atoms that selected regions of the periodic potential can be filled with one particle per site. We expect that our results can be scaled up to thousands of atoms by employing an atom-sorting algorithm with logarithmic complexity, which is enabled by polarization-synthesized optical lattices. Vibrational entropy is subsequently removed by sideband cooling methods. Our results pave the way for a bottom-up approach to creating ultralow-entropy states of a many-body system.
我们利用一种概念全新的光学晶格技术来创建中性原子的低熵态,该技术依赖于光偏振的高精度、高带宽合成。偏振合成光学晶格提供了两个完全可控的光学晶格势,每个势仅限制处于两个长寿命超精细态之一的原子。通过将一个晶格用作存储寄存器,另一个用作移位寄存器,我们用四个原子提供了一个概念验证,即周期势的选定区域可以每个位置填充一个粒子。我们预计,通过采用具有对数复杂度的原子排序算法,我们的结果可以扩展到数千个原子,而这是由偏振合成光学晶格实现的。随后通过边带冷却方法去除振动熵。我们的结果为自下而上创建多体系统的超低熵态铺平了道路。