文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Imputation for transcription factor binding predictions based on deep learning.

作者信息

Qin Qian, Feng Jianxing

机构信息

Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China.

出版信息

PLoS Comput Biol. 2017 Feb 24;13(2):e1005403. doi: 10.1371/journal.pcbi.1005403. eCollection 2017 Feb.


DOI:10.1371/journal.pcbi.1005403
PMID:28234893
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5345877/
Abstract

Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific community to conduct TF ChIP-seq experiments, the available data represent only a limited percentage of ChIP-seq experiments, considering all possible combinations of TFs and cell lines. In this study, we demonstrate a method for accurately predicting cell-specific TF binding for TF-cell line combinations based on only a small fraction (4%) of the combinations using available ChIP-seq data. The proposed model, termed TFImpute, is based on a deep neural network with a multi-task learning setting to borrow information across transcription factors and cell lines. Compared with existing methods, TFImpute achieves comparable accuracy on TF-cell line combinations with ChIP-seq data; moreover, TFImpute achieves better accuracy on TF-cell line combinations without ChIP-seq data. This approach can predict cell line specific enhancer activities in K562 and HepG2 cell lines, as measured by massively parallel reporter assays, and predicts the impact of SNPs on TF binding.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/c65ff31828d4/pcbi.1005403.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/50cd63c1005c/pcbi.1005403.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/e1dd2162f81f/pcbi.1005403.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/0449f92ec9bb/pcbi.1005403.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/8d60847d51e0/pcbi.1005403.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/c65ff31828d4/pcbi.1005403.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/50cd63c1005c/pcbi.1005403.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/e1dd2162f81f/pcbi.1005403.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/0449f92ec9bb/pcbi.1005403.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/8d60847d51e0/pcbi.1005403.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67f8/5345877/c65ff31828d4/pcbi.1005403.g005.jpg

相似文献

[1]
Imputation for transcription factor binding predictions based on deep learning.

PLoS Comput Biol. 2017-2-24

[2]
BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.

Bioinformatics. 2015-9-1

[3]
TICA: Transcriptional Interaction and Coregulation Analyzer.

Genomics Proteomics Bioinformatics. 2018-12-19

[4]
MixChIP: a probabilistic method for cell type specific protein-DNA binding analysis.

BMC Bioinformatics. 2015-12-24

[5]
Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data.

BMC Genomics. 2013

[6]
Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.

BMC Genomics. 2018-12-31

[7]
Cell-type specificity of ChIP-predicted transcription factor binding sites.

BMC Genomics. 2012-8-3

[8]
Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.

BMC Genomics. 2023-10-7

[9]
An efficient method to transcription factor binding sites imputation via simultaneous completion of multiple matrices with positional consistency.

Mol Biosyst. 2017-8-22

[10]
Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

Nucleic Acids Res. 2017-1-9

引用本文的文献

[1]
Improving plant breeding through AI-supported data integration.

Theor Appl Genet. 2025-6-2

[2]
The evaluation of transcription factor binding site prediction tools in human and Arabidopsis genomes.

BMC Bioinformatics. 2024-12-2

[3]
Integrating Prior Knowledge Using Transformer for Gene Regulatory Network Inference.

Adv Sci (Weinh). 2025-1

[4]
Big data and artificial intelligence-aided crop breeding: Progress and prospects.

J Integr Plant Biol. 2025-3

[5]
Predicting Transcription Factor Binding Sites with Deep Learning.

Int J Mol Sci. 2024-5-3

[6]
Deep Learning for Genomics: From Early Neural Nets to Modern Large Language Models.

Int J Mol Sci. 2023-11-1

[7]
Deep learning-empowered crop breeding: intelligent, efficient and promising.

Front Plant Sci. 2023-10-3

[8]
Screening for functional regulatory variants in open chromatin using GenIE-ATAC.

Nucleic Acids Res. 2023-6-23

[9]
The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles.

Genome Biol. 2023-4-18

[10]
Evidence for the role of transcription factors in the co-transcriptional regulation of intron retention.

Genome Biol. 2023-3-22

本文引用的文献

[1]
Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse.

Nucleic Acids Res. 2017-1-4

[2]
gkmSVM: an R package for gapped-kmer SVM.

Bioinformatics. 2016-7-15

[3]
High-dimensional genomic data bias correction and data integration using MANCIE.

Nat Commun. 2016-4-13

[4]
GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding.

Bioinformatics. 2016-2-15

[5]
Predicting effects of noncoding variants with deep learning-based sequence model.

Nat Methods. 2015-10

[6]
Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.

Nat Biotechnol. 2015-7-27

[7]
A method to predict the impact of regulatory variants from DNA sequence.

Nat Genet. 2015-8

[8]
Deep learning.

Nature. 2015-5-28

[9]
Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues.

Nat Biotechnol. 2015-4

[10]
Identification of altered cis-regulatory elements in human disease.

Trends Genet. 2015-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索