Nimmegeers Philippe, Lauwers Joost, Telen Dries, Logist Filip, Impe Jan Van
KU Leuven, Department of Chemical Engineering, BioTeC+ & OPTEC, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium.
KU Leuven, Department of Chemical Engineering, BioTeC+ & OPTEC, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium.
Math Biosci. 2017 Jun;288:21-34. doi: 10.1016/j.mbs.2017.02.008. Epub 2017 Feb 22.
In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult.
在这项工作中,对1号厌氧消化模型(ADM1)的结构可识别性和实际可识别性进行了研究,它是大型非线性动态网络模型的一个相关案例研究。使用概率算法研究结构可识别性,该算法经过调整以处理案例研究的具体情况(即由微分方程和代数方程组成的大规模非线性动态系统)。通过针对启发式设计的“非信息性”和“信息性”实验的蒙特卡罗参数估计程序来分析实际可识别性。ADM1的模型结构已通过用参数组合替换参数进行了修改,以提供一个通常局部结构可识别的ADM1版本。这意味着在理想化的理论情况下,参数可以被准确估计。此外,从网络结构中状态之间的大量互连可以解释一般为正的结构可识别性结果。然而,在参数估计中也观察到这种互连性,这使得在实践中进行不相关的参数估计变得困难。