Eisenberg Marisa C, Jain Harsh V
Epidemiology and Mathematics, University of Michigan, United States.
Mathematics, Florida State University, United States.
J Theor Biol. 2017 Oct 27;431:63-78. doi: 10.1016/j.jtbi.2017.07.018. Epub 2017 Jul 19.
Mathematical modeling has a long history in the field of cancer therapeutics, and there is increasing recognition that it can help uncover the mechanisms that underlie tumor response to treatment. However, making quantitative predictions with such models often requires parameter estimation from data, raising questions of parameter identifiability and estimability. Even in the case of structural (theoretical) identifiability, imperfect data and the resulting practical unidentifiability of model parameters can make it difficult to infer the desired information, and in some cases, to yield biologically correct inferences and predictions. Here, we examine parameter identifiability and estimability using a case study of two compartmental, ordinary differential equation models of cancer treatment with drugs that are cell cycle-specific (taxol) as well as non-specific (oxaliplatin). We proceed through model building, structural identifiability analysis, parameter estimation, practical identifiability analysis and its biological implications, as well as alternative data collection protocols and experimental designs that render the model identifiable. We use the differential algebra/input-output relationship approach for structural identifiability, and primarily the profile likelihood approach for practical identifiability. Despite the models being structurally identifiable, we show that without consideration of practical identifiability, incorrect cell cycle distributions can be inferred, that would result in suboptimal therapeutic choices. We illustrate the usefulness of estimating practically identifiable combinations (in addition to the more typically considered structurally identifiable combinations) in generating biologically meaningful insights. We also use simulated data to evaluate how the practical identifiability of the model would change under alternative experimental designs. These results highlight the importance of understanding the underlying mechanisms rather than purely using parsimony or information criteria/goodness-of-fit to decide model selection questions. The overall roadmap for identifiability testing laid out here can be used to help provide mechanistic insight into complex biological phenomena, reduce experimental costs, and optimize model-driven experimentation.
数学建模在癌症治疗领域有着悠久的历史,并且人们越来越认识到它有助于揭示肿瘤对治疗反应的潜在机制。然而,使用此类模型进行定量预测通常需要从数据中估计参数,这就引发了参数可识别性和可估计性的问题。即使在结构(理论)可识别的情况下,不完美的数据以及由此导致的模型参数实际不可识别性,可能会使推断所需信息变得困难,在某些情况下,还会导致生物学上不正确的推断和预测。在这里,我们通过一个案例研究来检验参数的可识别性和可估计性,该案例研究涉及两个房室的常微分方程模型,用于描述细胞周期特异性药物(紫杉醇)和非特异性药物(奥沙利铂)的癌症治疗。我们依次进行模型构建、结构可识别性分析、参数估计、实际可识别性分析及其生物学意义,以及使模型可识别的替代数据收集方案和实验设计。我们使用微分代数/输入 - 输出关系方法进行结构可识别性分析,主要使用轮廓似然方法进行实际可识别性分析。尽管模型在结构上是可识别的,但我们表明,如果不考虑实际可识别性,可能会推断出不正确的细胞周期分布,从而导致次优的治疗选择。我们说明了估计实际可识别组合(除了更常考虑的结构可识别组合)在产生生物学上有意义的见解方面的有用性。我们还使用模拟数据来评估模型的实际可识别性在替代实验设计下将如何变化。这些结果强调了理解潜在机制的重要性,而不是单纯使用简约性或信息标准/拟合优度来决定模型选择问题。这里列出的可识别性测试总体路线图可用于帮助提供对复杂生物学现象的机制性见解、降低实验成本以及优化模型驱动的实验。