Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Signaling Systems Laboratory, San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences (QCBio) and Molecular Biology Institute (MBI), University of California, Los Angeles, Los Angeles, CA 90025, USA.
Cell Syst. 2017 Mar 22;4(3):330-343.e5. doi: 10.1016/j.cels.2017.01.012. Epub 2017 Feb 22.
Combinatorial control of gene expression is presumed to be mediated by molecular interactions between coincident transcription factors (TFs). While information on the genome-wide locations of TFs is available, the genes they regulate and whether they function combinatorially often remain open questions. Here, we developed a mechanistic, rather than statistical, modeling approach to elucidate TF control logic from gene expression data. Applying this approach to hundreds of genes in 85 datasets measuring the transcriptional responses of murine fibroblasts and macrophages to cytokines and pathogens, we found that stimulus-responsive TFs generally function sequentially in logical OR gates or singly. Logical AND gates were found between NF-κB-responsive mRNA synthesis and MAPKp38-responsive control of mRNA half-life, but not between temporally coincident TFs. Our analyses identified the functional target genes of each of the pathogen-responsive TFs and prompt a revision of the conceptual underpinnings of combinatorial control of gene expression to include sequentially acting molecular mechanisms that govern mRNA synthesis and decay.
基因表达的组合控制被认为是通过同时发生的转录因子 (TFs) 之间的分子相互作用来介导的。虽然关于 TFs 的全基因组位置的信息是可用的,但它们调节的基因以及它们是否组合地发挥作用通常仍然是悬而未决的问题。在这里,我们开发了一种机械的,而不是统计的,建模方法,从基因表达数据中阐明 TF 控制逻辑。将这种方法应用于数百个基因,这些基因来自 85 个数据集,这些数据集测量了小鼠成纤维细胞和巨噬细胞对细胞因子和病原体的转录反应,我们发现,刺激反应性 TFs 通常以逻辑或门的顺序或单独地起作用。在 NF-κB 反应性 mRNA 合成和 MAPKp38 反应性控制 mRNA 半衰期之间发现了逻辑与门,但在时间上同时发生的 TFs 之间没有发现。我们的分析确定了每个病原体反应性 TF 的功能靶基因,并促使对基因表达的组合控制的概念基础进行修订,以包括控制 mRNA 合成和降解的顺序作用的分子机制。