通过信号转导和调控相互作用的多层网络整合来检测和剖析信号串扰。
Detecting and dissecting signaling crosstalk via the multilayer network integration of signaling and regulatory interactions.
机构信息
Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Rome, 00185, Italy.
出版信息
Nucleic Acids Res. 2024 Jan 11;52(1):e5. doi: 10.1093/nar/gkad1035.
The versatility of cellular response arises from the communication, or crosstalk, of signaling pathways in a complex network of signaling and transcriptional regulatory interactions. Understanding the various mechanisms underlying crosstalk on a global scale requires untargeted computational approaches. We present a network-based statistical approach, MuXTalk, that uses high-dimensional edges called multilinks to model the unique ways in which signaling and regulatory interactions can interface. We demonstrate that the signaling-regulatory interface is located primarily in the intermediary region between signaling pathways where crosstalk occurs, and that multilinks can differentiate between distinct signaling-transcriptional mechanisms. Using statistically over-represented multilinks as proxies of crosstalk, we infer crosstalk among 60 signaling pathways, expanding currently available crosstalk databases by more than five-fold. MuXTalk surpasses existing methods in terms of model performance metrics, identifies additions to manual curation efforts, and pinpoints potential mediators of crosstalk. Moreover, it accommodates the inherent context-dependence of crosstalk, allowing future applications to cell type- and disease-specific crosstalk.
细胞反应的多功能性源于信号通路在信号和转录调控相互作用的复杂网络中的交流或串扰。要从全局范围理解串扰的各种机制,需要采用无目标的计算方法。我们提出了一种基于网络的统计方法 MuXTalk,该方法使用称为多链接的高维边缘来模拟信号和调节相互作用可以连接的独特方式。我们证明信号-调节界面主要位于发生串扰的信号通路的中间区域,并且多链接可以区分不同的信号-转录机制。使用作为串扰代理的统计上过度表示的多链接,我们推断出 60 种信号通路之间的串扰,将当前可用的串扰数据库扩展了五倍以上。在模型性能指标方面,MuXTalk 优于现有方法,识别出对人工策展工作的补充,并确定串扰的潜在介质。此外,它还适应了串扰的固有上下文相关性,为未来针对细胞类型和疾病特异性串扰的应用提供了可能。
相似文献
Brief Bioinform. 2019-7-19
Bioinformatics. 2016-1-15
Comput Methods Programs Biomed. 2019-6-4
PLoS Comput Biol. 2020-2-25
Nat Commun. 2019-9-6
引用本文的文献
本文引用的文献
Brief Bioinform. 2022-11-19
Pac Symp Biocomput. 2022
Nucleic Acids Res. 2022-1-7
Biomolecules. 2021-9-14
BMC Bioinformatics. 2021-3-25
Nat Commun. 2020-11-27
Nucleic Acids Res. 2021-1-8