Suppr超能文献

A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories.

作者信息

Rezazadeh Siavash, Gregg Robert D

机构信息

Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.

出版信息

Proc ASME Dyn Syst Control Conf. 2016 Oct;2016. doi: 10.1115/DSCC2016-9851.

Abstract

Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.

摘要

相似文献

1
A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories.
Proc ASME Dyn Syst Control Conf. 2016 Oct;2016. doi: 10.1115/DSCC2016-9851.
3
Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
Sensors (Basel). 2022 Jun 12;22(12):4440. doi: 10.3390/s22124440.
4
A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
Neural Netw. 2010 Apr;23(3):452-60. doi: 10.1016/j.neunet.2009.11.003. Epub 2009 Dec 3.
5
Kid-size robot humanoid walking with heel-contact and toe-off motion.
PeerJ Comput Sci. 2022 Mar 15;7:e797. doi: 10.7717/peerj-cs.797. eCollection 2022.
6
Research on Walking Gait Planning and Simulation of a Novel Hybrid Biped Robot.
Biomimetics (Basel). 2023 Jun 15;8(2):258. doi: 10.3390/biomimetics8020258.
7
Design and control of a pneumatic musculoskeletal biped robot.
Technol Health Care. 2016 Apr 29;24 Suppl 2:S443-54. doi: 10.3233/THC-161167.
8
Hybrid Momentum Compensation Control by Using Arms for Bipedal Dynamic Walking.
Biomimetics (Basel). 2023 Jan 12;8(1):31. doi: 10.3390/biomimetics8010031.

本文引用的文献

1
Preliminary Experiments with a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds.
Rep U S. 2016 Oct;2016:5427-5433. doi: 10.1109/IROS.2016.7759798. Epub 2016 Dec 1.
2
A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations.
IEEE Trans Neural Syst Rehabil Eng. 2017 Mar;25(3):265-278. doi: 10.1109/TNSRE.2016.2569019. Epub 2016 May 13.
3
Orthotic Body-Weight Support Through Underactuated Potential Energy Shaping with Contact Constraints.
Proc IEEE Conf Decis Control. 2015 Dec;2015:1483-1490. doi: 10.1109/cdc.2015.7402420.
5
Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.
PLoS One. 2012;7(12):e51888. doi: 10.1371/journal.pone.0051888. Epub 2012 Dec 20.
6
A simple state-determined model reproduces entrainment and phase-locking of human walking.
PLoS One. 2012;7(11):e47963. doi: 10.1371/journal.pone.0047963. Epub 2012 Nov 12.
7
Walking is not like reaching: evidence from periodic mechanical perturbations.
PLoS One. 2012;7(3):e31767. doi: 10.1371/journal.pone.0031767. Epub 2012 Mar 27.
8
On the mechanics of the ankle in the stance phase of the gait.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8135-40. doi: 10.1109/IEMBS.2011.6092007.
9
Design and Control of a Powered Transfemoral Prosthesis.
Int J Rob Res. 2008 Feb 1;27(2):263-273. doi: 10.1177/0278364907084588.
10
Central pattern generators for locomotion control in animals and robots: a review.
Neural Netw. 2008 May;21(4):642-53. doi: 10.1016/j.neunet.2008.03.014. Epub 2008 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验