Suppr超能文献

使用随机生存森林分析胃癌患者生存的预后因素

Prognostic Factors for Survival in Patients with Gastric Cancer using a Random Survival Forest.

作者信息

Adham Davoud, Abbasgholizadeh Nategh, Abazari Malek

机构信息

Department of Public Health, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran. Email:

出版信息

Asian Pac J Cancer Prev. 2017 Jan 1;18(1):129-134. doi: 10.22034/APJCP.2017.18.1.129.

Abstract

Background: Gastric cancer is the fifth most common cancer and the third top cause of cancer related death with about 1 million new cases and 700,000 deaths in 2012. The aim of this investigation was to identify important factors for outcome using a random survival forest (RSF) approach. Materials and Methods: Data were collected from 128 gastric cancer patients through a historical cohort study in Hamedan-Iran from 2007 to 2013. The event under consideration was death due to gastric cancer. The random survival forest model in R software was applied to determine the key factors affecting survival. Four split criteria were used to determine importance of the variables in the model including log-rank, conversation?? of events, log-rank score, and randomization. Efficiency of the model was confirmed in terms of Harrell’s concordance index. Results: The mean age of diagnosis was 63 ±12.57 and mean and median survival times were 15.2 (95%CI: 13.3, 17.0) and 12.3 (95%CI: 11.0, 13.4) months, respectively. The one-year, two-year, and three-year rates for survival were 51%, 13%, and 5%, respectively. Each RSF approach showed a slightly different ranking order. Very important covariates in nearly all the 4 RSF approaches were metastatic status, age at diagnosis and tumor size. The performance of each RSF approach was in the range of 0.29-0.32 and the best error rate was obtained by the log-rank splitting rule; second, third, and fourth ranks were log-rank score, conservation of events, and the random splitting rule, respectively. Conclusion: Low survival rate of gastric cancer patients is an indication of absence of a screening program for early diagnosis of the disease. Timely diagnosis in early phases increases survival and decreases mortality.

摘要

背景

胃癌是第五大常见癌症,也是癌症相关死亡的第三大原因,2012年约有100万新发病例和70万例死亡。本研究的目的是采用随机生存森林(RSF)方法确定影响预后的重要因素。材料与方法:通过对2007年至2013年伊朗哈马丹的一项历史队列研究,收集了128例胃癌患者的数据。所考虑的事件是因胃癌死亡。应用R软件中的随机生存森林模型来确定影响生存的关键因素。使用四种分割标准来确定模型中变量的重要性,包括对数秩检验、事件转换、对数秩得分和随机化。根据Harrell一致性指数确认模型的有效性。结果:诊断时的平均年龄为63±12.57岁,平均和中位生存时间分别为15.2(95%CI:13.3,17.0)个月和12.3(95%CI:11.0,13.4)个月。一年、两年和三年生存率分别为51%、13%和5%。每种RSF方法显示出略有不同的排名顺序。几乎所有4种RSF方法中非常重要的协变量是转移状态、诊断时年龄和肿瘤大小。每种RSF方法的性能在0.29 - 0.32范围内,对数秩分割规则获得了最佳错误率;第二、第三和第四排名分别是对数秩得分、事件守恒和随机分割规则。结论:胃癌患者生存率低表明缺乏该疾病的早期诊断筛查项目。早期及时诊断可提高生存率并降低死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a675/5563089/417c81c3ac9a/APJCP-18-129-g001.jpg

相似文献

1
Prognostic Factors for Survival in Patients with Gastric Cancer using a Random Survival Forest.
Asian Pac J Cancer Prev. 2017 Jan 1;18(1):129-134. doi: 10.22034/APJCP.2017.18.1.129.
3
A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
BMC Med Res Methodol. 2021 Sep 25;21(1):193. doi: 10.1186/s12874-021-01386-8.
4
Factors affecting the survival of patients with colorectal cancer using random survival forest.
J Gastrointest Cancer. 2022 Mar;53(1):64-71. doi: 10.1007/s12029-020-00544-3. Epub 2020 Nov 10.
5
Individual risk prediction: Comparing random forests with Cox proportional-hazards model by a simulation study.
Biom J. 2023 Aug;65(6):e2100380. doi: 10.1002/bimj.202100380. Epub 2022 Sep 28.
7
Survival rate of patients with gastric cancer in Hormozgan Province, Iran.
Med J Islam Repub Iran. 2019 Jul 24;33:74. doi: 10.34171/mjiri.33.74. eCollection 2019.
9
Identifying Factors Affecting the Survival of Patients with HIV-Associated B-Cell Lymphoma Using a Random Survival Forest Model.
Clin Med Insights Oncol. 2024 Jun 22;18:11795549241260572. doi: 10.1177/11795549241260572. eCollection 2024.
10
Prediction the survival of patients with breast cancer using random survival forests for competing risks.
J Prev Med Hyg. 2022 Jul 31;63(2):E298-E303. doi: 10.15167/2421-4248/jpmh2022.63.2.2405. eCollection 2022 Jun.

引用本文的文献

5
Comparative evaluation of outcomes amongst different radiosurgery management paradigms for patients with large brain metastasis.
J Neurooncol. 2024 Aug;169(1):105-117. doi: 10.1007/s11060-024-04706-2. Epub 2024 Jun 5.
8
Predicting Clinical Remission of Chronic Urticaria Using Random Survival Forests: Machine Learning Applied to Real-World Data.
Dermatol Ther (Heidelb). 2022 Dec;12(12):2747-2763. doi: 10.1007/s13555-022-00827-6. Epub 2022 Oct 27.
9
Accuracy of Endoscopic Ultrasonography for Gastric Cancer Staging.
Curr Health Sci J. 2022 Jan-Mar;48(1):88-94. doi: 10.12865/CHSJ.48.01.13. Epub 2022 Mar 31.
10
Artificial intelligence predictive system of individual survival rate for lung adenocarcinoma.
Comput Struct Biotechnol J. 2022 May 14;20:2352-2359. doi: 10.1016/j.csbj.2022.05.005. eCollection 2022.

本文引用的文献

1
Global cancer statistics, 2012.
CA Cancer J Clin. 2015 Mar;65(2):87-108. doi: 10.3322/caac.21262. Epub 2015 Feb 4.
2
Prognostic factors in metastatic gastric cancer: results of a population-based, retrospective cohort study in Ontario.
Gastric Cancer. 2016 Jan;19(1):150-9. doi: 10.1007/s10120-014-0442-3. Epub 2014 Nov 25.
3
Survival of patients with stomach adenocarcinoma in North of Iran.
Gastroenterol Hepatol Bed Bench. 2014 Fall;7(4):211-7.
4
Factors predicting survival of patients with gastric cancer.
Asian Pac J Cancer Prev. 2014;15(14):5835-8. doi: 10.7314/apjcp.2014.15.14.5835.
5
Family history, body mass index and survival in Japanese patients with stomach cancer: a prospective study.
Int J Cancer. 2015 Jan 15;136(2):411-24. doi: 10.1002/ijc.29001. Epub 2014 Jun 17.
6
The stomach cancer pooling (StoP) project: study design and presentation.
Eur J Cancer Prev. 2015 Jan;24(1):16-23. doi: 10.1097/CEJ.0000000000000017.
7
Prognostic factors and causes of death in patients cured of esophageal cancer.
Ann Surg Oncol. 2014 May;21(5):1749-55. doi: 10.1245/s10434-014-3499-7. Epub 2014 Feb 8.
8
Ocular adnexal lymphoma: assessment of a tumor-node-metastasis staging system.
Ophthalmology. 2013 Sep;120(9):1915-9. doi: 10.1016/j.ophtha.2013.02.003. Epub 2013 May 9.
9
Dissecting causal components in gastric carcinogenesis.
Eur J Cancer Prev. 2013 Nov;22(6):489-91. doi: 10.1097/CEJ.0b013e3283603480.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验