Wang Feifan, Chen Lu, Liu Lihong, Jia Yitao, Li Wei, Wang Lianjing, Zhi Jie, Liu Wei, Li Weijing, Li Zhongxin
Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050000, China.
Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
J Cancer Res Clin Oncol. 2023 Oct;149(13):12177-12189. doi: 10.1007/s00432-023-05123-0. Epub 2023 Jul 10.
Due to the rarity of primary gastrointestinal lymphoma (PGIL), the prognostic factors and optimal management of PGIL have not been clearly defined. We aimed to establish prognostic models using a deep learning algorithm for survival prediction.
We collected 11,168 PGIL patients from the Surveillance, Epidemiology, and End Results (SEER) database to form the training and test cohorts. At the same time, we collected 82 PGIL patients from three medical centres to form the external validation cohort. We constructed a Cox proportional hazards (CoxPH) model, random survival forest (RSF) model, and neural multitask logistic regression (DeepSurv) model to predict PGIL patients' overall survival (OS).
The 1-, 3-, 5-, and 10-year OS rates of PGIL patients in the SEER database were 77.1%, 69.4%, 63.7%, and 50.3%, respectively. The RSF model based on all variables showed that the top three most important variables for predicting OS were age, histological type, and chemotherapy. The independent risk factors for PGIL patient prognosis included sex, age, race, primary site, Ann Arbor stage, histological type, symptom, radiotherapy, and chemotherapy, according to the Lasso regression analysis. Using these factors, we built the CoxPH and DeepSurv models. The DeepSurv model's C-index values were 0.760 in the training cohort, 0.742 in the test cohort, and 0.707 in the external validation cohort, which demonstrated that the DeepSurv model performed better compared to the RSF model (0.728) and the CoxPH model (0.724). The DeepSurv model accurately predicted 1-, 3-, 5- and 10-year OS. Both calibration curves and decision curve analysis curves demonstrated the superior performance of the DeepSurv model. We developed the DeepSurv model as an online web calculator for survival prediction, which can be accessed at http://124.222.228.112:8501/ .
This DeepSurv model with external validation is superior to previous studies in predicting short-term and long-term survival and can help us make better-individualized decisions for PGIL patients.
由于原发性胃肠道淋巴瘤(PGIL)较为罕见,其预后因素和最佳治疗方案尚未明确界定。我们旨在使用深度学习算法建立预后模型,以预测生存情况。
我们从监测、流行病学和最终结果(SEER)数据库中收集了11168例PGIL患者,组成训练队列和测试队列。同时,我们从三个医疗中心收集了82例PGIL患者,组成外部验证队列。我们构建了Cox比例风险(CoxPH)模型、随机生存森林(RSF)模型和神经多任务逻辑回归(DeepSurv)模型,以预测PGIL患者的总生存期(OS)。
SEER数据库中PGIL患者的1年、3年、5年和10年总生存率分别为77.1%、69.4%、63.7%和50.3%。基于所有变量的RSF模型显示,预测总生存期最重要的三个变量是年龄、组织学类型和化疗。根据Lasso回归分析,PGIL患者预后的独立危险因素包括性别、年龄、种族、原发部位、Ann Arbor分期、组织学类型、症状、放疗和化疗。利用这些因素,我们构建了CoxPH模型和DeepSurv模型。DeepSurv模型在训练队列中的C指数值为0.760,在测试队列中为0.742,在外部验证队列中为0.707,这表明DeepSurv模型比RSF模型(0.728)和CoxPH模型(0.724)表现更好。DeepSurv模型准确预测了1年、3年、5年和10年的总生存期。校准曲线和决策曲线分析曲线均显示了DeepSurv模型的优越性能。我们将DeepSurv模型开发为一个用于生存预测的在线网络计算器,可通过http://124.222.228.112:8501/访问。
这个经过外部验证的DeepSurv模型在预测短期和长期生存方面优于以往的研究,能够帮助我们为PGIL患者做出更好的个体化决策。