Suppr超能文献

利用条件共现分布鉴定癌症中与结局相关的驱动突变。

Identification of outcome-related driver mutations in cancer using conditional co-occurrence distributions.

机构信息

Escuela de Medicina, Tecnologico de Monterrey, Av. Morones Prieto 3000 Pte. Monterrey, Nuevo Leon 64710, Mexico.

Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Sci Rep. 2017 Feb 27;7:43350. doi: 10.1038/srep43350.

Abstract

Previous methods proposed for the detection of cancer driver mutations have been based on the estimation of background mutation rate, impact on protein function, or network influence. In this paper, we instead focus on those factors influencing patient survival. To this end, an approximation of the log-rank test has been systematically applied, even though it assumes a large and similar number of patients in both risk groups, which is violated in cancer genomics. Here, we propose VALORATE, a novel algorithm for the estimation of the null distribution for the log-rank, independent of the number of mutations. VALORATE is based on conditional distributions of the co-occurrences between events and mutations. The results, achieved through simulations, comparisons with other methods, analyses of TCGA and ICGC cancer datasets, and validations, suggest that VALORATE is accurate, fast, and can identify both known and novel gene mutations. Our proposal and results may have important implications in cancer biology, bioinformatics analyses, and ultimately precision medicine.

摘要

先前提出的用于检测癌症驱动突变的方法基于对背景突变率、对蛋白质功能的影响或网络影响的估计。在本文中,我们转而关注那些影响患者生存的因素。为此,我们系统地应用了对数秩检验的近似值,尽管它假设风险组中的患者数量很大且相似,但这在癌症基因组学中是违反的。在这里,我们提出了 VALORATE,一种用于估计对数秩的零分布的新算法,与突变数量无关。VALORATE 基于事件和突变之间共同发生的条件分布。通过模拟、与其他方法的比较、TCGA 和 ICGC 癌症数据集的分析以及验证获得的结果表明,VALORATE 准确、快速,并且可以识别已知和新的基因突变。我们的建议和结果可能对癌症生物学、生物信息学分析,最终对精准医学具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3e5/5327384/b7197062492e/srep43350-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验