Suppr超能文献

FGMD:一种用于癌症中功能基因模块检测的新方法。

FGMD: A novel approach for functional gene module detection in cancer.

作者信息

Jin Daeyong, Lee Hyunju

机构信息

Korea Environment Institute, Sejong, South Korea.

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea.

出版信息

PLoS One. 2017 Dec 15;12(12):e0188900. doi: 10.1371/journal.pone.0188900. eCollection 2017.

Abstract

With the increasing availability of multi-dimensional biological datasets for the same samples (i.e., gene expression, microRNAs, copy numbers, mutations, methylations), it has now become possible to systematically understand the regulatory mechanisms operating in a cancer cell. For this task, it is important to discover a set of co-expressed genes with functions, representing a so-called functional gene module, because co-expressed genes tend to be co-regulated by the same regulators, including transcription factors, microRNAs, and copy number aberrations. Several algorithms have been used to identify such gene modules, including hierarchical clustering and non-negative matrix factorization. Although these algorithms have been applied to many microarray datasets, only a few systematic analyses of these algorithms have been performed for RNA-sequencing (RNA-Seq) data to date. Although gene expression levels determined based on microarray and RNA-Seq datasets tend to be highly correlated, the expression levels of some genes differ depending on the platforms used for analysis, which may result in the construction of different gene modules for the same samples. Here, we compare several module detection algorithms applied to both microarray and RNA-seq datasets. We further propose a new functional gene module detection algorithm (FGMD), which is based on a hierarchical clustering algorithm that was modified to reflect actual biological observations, including the fact that a single gene may be involved in multiple biological pathways. Application of existing algorithms and the new FGMD algorithm to breast cancer and ovarian cancer datasets from The Cancer Genome Atlas showed that the FGMD algorithm had the best performance for most of the functional pathway enrichment tests and in the transcription factor enrichment test. We expect that the FGMD algorithm will contribute to improving the identification of functional gene modules related to cancer.

摘要

随着针对同一样本的多维生物学数据集(即基因表达、微小RNA、拷贝数、突变、甲基化)越来越容易获取,现在已经有可能系统地了解癌细胞中运行的调控机制。对于这项任务,发现一组具有功能的共表达基因(即所谓的功能基因模块)很重要,因为共表达基因往往受相同调节因子的共同调控,这些调节因子包括转录因子、微小RNA和拷贝数畸变。已经使用了几种算法来识别此类基因模块,包括层次聚类和非负矩阵分解。尽管这些算法已应用于许多微阵列数据集,但迄今为止,针对RNA测序(RNA-Seq)数据对这些算法进行的系统分析却很少。虽然基于微阵列和RNA-Seq数据集确定的基因表达水平往往高度相关,但某些基因的表达水平会因用于分析的平台而异,这可能导致为同一样本构建不同的基因模块。在这里,我们比较了应用于微阵列和RNA-seq数据集的几种模块检测算法。我们还提出了一种新的功能基因模块检测算法(FGMD),该算法基于层次聚类算法,并进行了修改以反映实际生物学观察结果,包括单个基因可能参与多个生物学途径这一事实。将现有算法和新的FGMD算法应用于来自癌症基因组图谱的乳腺癌和卵巢癌数据集表明,FGMD算法在大多数功能途径富集测试和转录因子富集测试中表现最佳。我们预计FGMD算法将有助于改进与癌症相关的功能基因模块的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb64/5731741/e3f11e6ec2ab/pone.0188900.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验