Yale Chemistry Department, 225 Prospect Street, New Haven, CT 06520-8107, USA.
Chem Soc Rev. 2017 Mar 21;46(6):1720-1729. doi: 10.1039/c6cs00688d.
In hypervalent bonding (HVB), secondary bonding (SB) and hydrogen bonding (HB) a nucleophilic and an electrophilic partner form a new bond that is based on a similar bonding pattern across the whole series of interactions. The electrostatic contribution is reflected in the 'σ hole' model in which a positive patch on E attracts the nucleophilic component. The nucleophile, Y, possesses a corresponding negative patch, resulting in a linear structure YE-X having one strong E-X bond and one weaker, longer YE interaction; this is considered as a SB interaction between Y and E. The covalent component, more important in the stronger interactions, HVB and strong HB, involves charge transfer between the lone pair (n) of Y, and the σ* orbital of E-X as emphasized in the 'n→σ*' bonding model. For example, charge transfer from I to I gives rise to the linear, symmetrical [I-I-I] anion. We now have two short (2.95 Å) bonds of equal strength corresponding to true HVB. In HB the central element, E, is H, and we can have strong or weak hydrogen bonding. On the HVB/HB analogy, a strong symmetrical HB, as in [F-H-F], can be considered as containing hypervalent hydrogen. In the weak HB case, we have a lesser degree of interaction, leading to normal hydrogen bonds of type YH-X analogous to secondary bonding. Within both the HB and HVB series, strong and weak types form a smooth continuum with no sharp break in properties. HVB was once considered to involve the expansion of the octet to 10, 12 or even higher valence electron counts. Whether the σ hole or n→σ* model applies, any octet expansion is now seen as largely formal, however, because the central element essentially retains its eight valence electrons. Thus a range of interactions can be placed in one big tent, related by a combination of σ hole and n→σ* bonding contributions with retention of the octet by the central element, E.
在高键合(HVB)中,次级键合(SB)和氢键合(HB)中,亲核伙伴和亲电伙伴形成新的键,该键基于整个相互作用系列中类似的键合模式。静电贡献反映在“σ孔”模型中,其中 E 上的正斑块吸引亲核成分。亲核试剂 Y 具有相应的负斑块,导致具有一个强 E-X 键和一个较弱、较长的 YE 相互作用的线性结构 YE-X;这被认为是 Y 和 E 之间的 SB 相互作用。在更强的相互作用中,共价成分更重要,HVB 和强 HB 涉及 Y 的孤对电子(n)与 E-X 的 σ轨道之间的电荷转移,如“n→σ”键合模型所强调的那样。例如,I 向 I 的电荷转移导致线性对称的[I-I-I]阴离子。我们现在有两个相等强度的短(2.95Å)键,对应于真正的 HVB。在 HB 中,中心元素 E 是 H,我们可以有强或弱的氢键。在 HVB/HB 类比中,强对称的 HB,如[F-H-F],可以被认为包含高键合的氢。在弱 HB 情况下,我们的相互作用程度较低,导致类似于次级键合的 YH-X 型正常氢键。在 HB 和 HVB 系列中,强和弱类型形成一个连续体,没有性质的明显中断。HVB 曾经被认为涉及八电子的扩展到 10、12 甚至更高的价电子数。无论应用 σ孔还是 n→σ模型,现在都认为任何八电子扩展在很大程度上都是形式上的,然而,因为中心元素本质上保留其八个价电子。因此,可以将一系列相互作用置于一个大帐篷中,通过 σ孔和 n→σ键合贡献的组合以及中心元素 E 保留八电子来关联。