Department of Chemistry, Columbia University , New York, New York 10027, United States.
Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.
Nano Lett. 2017 Mar 8;17(3):1727-1732. doi: 10.1021/acs.nanolett.6b05022. Epub 2017 Feb 27.
We use scanning photocurrent microscopy and time-resolved microwave conductivity to measure the diffusion of holes and electrons in a series of lead bromide perovskite single crystals, APbBr, with A = methylammonium (MA), formamidinium (FA), and Cs. We find that the diffusion length of holes (L ∼ 10-50 μm) is on average an order of magnitude longer than that of electrons (L ∼ 1-5 μm), regardless of the A-type cation or applied bias. Furthermore, we observe a weak dependence of L across the A-cation series MA > FA > Cs. When considering the role of the halide, we find that the diffusion of holes in MAPbBr is comparable to that in MAPbI, but the electron diffusion length is up to five times shorter. This study shows that the disparity between hole and electron diffusion is a ubiquitous feature of lead halide perovskites. As with organic photovoltaics, this imbalance will likely become an important consideration in the optimization of lead halide perovskite solar cells.
我们使用扫描光电流显微镜和时间分辨微波电导率测量了一系列溴化铅钙钛矿单晶 APbBr(A = 甲脒铵、甲胺和铯)中空穴和电子的扩散。无论 A 型阳离子或外加偏压如何,我们发现空穴的扩散长度(L∼10-50μm)平均比电子的扩散长度(L∼1-5μm)长一个数量级。此外,我们观察到在 A 阳离子系列中 L 的弱依赖性 MA>FA>Cs。当考虑卤化物的作用时,我们发现 MAPbBr 中的空穴扩散与 MAPbI 中的空穴扩散相当,但电子扩散长度短了五倍。这项研究表明,空穴和电子扩散之间的差异是卤化铅钙钛矿的普遍特征。与有机光伏一样,这种不平衡可能会成为优化卤化铅钙钛矿太阳能电池的一个重要考虑因素。