Fornelli Luca, Ayoub Daniel, Aizikov Konstantin, Liu Xiaowen, Damoc Eugen, Pevzner Pavel A, Makarov Alexander, Beck Alain, Tsybin Yury O
Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Thermo Fisher Scientific GmbH, 28199 Bremen, Germany.
J Proteomics. 2017 Apr 21;159:67-76. doi: 10.1016/j.jprot.2017.02.013. Epub 2017 Feb 27.
The increasing importance of immunoglobulins G (IgGs) as biotherapeutics calls for improved structural characterization methods designed for these large (~150kDa) macromolecules. Analysis workflows have to be rapid, robust, and require minimal sample preparation. In a previous work we showed the potential of Orbitrap Fourier transform mass spectrometry (FTMS) combined with electron transfer dissociation (ETD) for the top-down investigation of an intact IgG1, resulting in ~30% sequence coverage. Here, we describe a top-down analysis of two IgGs1 (adalimumab and trastuzumab) and one IgG2 (panitumumab) performed with ETD on a mass spectrometer equipped with a high-field Orbitrap mass analyzer. For the IgGs1, sequence coverage comparable to the previous results was achieved in a two-fold reduced number of summed transients, which corresponds, taken together with the significantly increased spectra acquisition rate, to ~six-fold improvement in analysis time. Furthermore, we studied the influence of ion-ion interaction times on ETD product ions for IgGs1, and the differences in fragmentation behavior between IgGs1 and IgG2, which present structural differences. Overall, these results reinforce the hypothesis that gas phase dissociation using both energy threshold-based and radical-driven ion activations is directed to specific regions of the polypeptide chains mostly by the location of disulfide bonds.
Compared with our previous report, the results presented herein demonstrate the power of technological advances of the next generation Orbitrap™ platform, including the use of a high-field compact (i.e., D20) Orbitrap mass analyzer, and a dedicated manipulation strategy for large protein ions (via their trapping in the HCD collision cell along with reduction of the pressure in the cell). Notably, these important developments became recently commercially available in the top-end Orbitrap platforms under the name of "Protein Mode". Furthermore, we continued exploring the advantages offered by the summation (averaging) of transients (time-domain data) for improving the signal-to-noise ratio of top-down mass spectra. Finally, for the first time we report the application of the hybrid ion activation technique that combines electron transfer dissociation and higher energy collisional dissociation, known as EThcD, on intact monoclonal antibodies. Under these specific instrumental parameters, EThcD produces a partially complementary fragmentation pattern compared to ETD, increasing the overall sequence coverage especially at the protein termini.
免疫球蛋白G(IgG)作为生物治疗药物的重要性日益增加,这就需要改进针对这些大分子(约150 kDa)设计的结构表征方法。分析流程必须快速、稳健,且样品制备要求最低。在之前的一项工作中,我们展示了轨道阱傅里叶变换质谱(FTMS)结合电子转移解离(ETD)用于完整IgG1自上而下研究的潜力,序列覆盖率约为30%。在此,我们描述了在配备高场轨道阱质量分析器的质谱仪上使用ETD对两种IgG1(阿达木单抗和曲妥珠单抗)和一种IgG2(帕尼单抗)进行的自上而下分析。对于IgG1,在瞬态累加次数减少两倍的情况下实现了与之前结果相当的序列覆盖率,再加上显著提高的光谱采集速率,分析时间提高了约六倍。此外,我们研究了离子 - 离子相互作用时间对IgG1的ETD产物离子的影响,以及IgG1和IgG2之间的碎片化行为差异,它们存在结构差异。总体而言,这些结果强化了这样一种假设,即使用基于能量阈值和自由基驱动的离子激活的气相解离主要通过二硫键的位置指向多肽链的特定区域。
与我们之前的报告相比,本文展示的结果证明了下一代轨道阱™平台的技术进步的力量,包括使用高场紧凑型(即D20)轨道阱质量分析器,以及针对大蛋白离子的专用操作策略(通过将它们捕获在HCD碰撞池中并降低池内压力)。值得注意的是,这些重要进展最近在高端轨道阱平台上以“蛋白质模式”的名称实现了商业化。此外,我们继续探索通过瞬态(时域数据)累加(平均)来提高自上而下质谱信噪比的优势。最后我们首次报告了将电子转移解离和高能碰撞解离相结合的混合离子激活技术(称为EThcD)在完整单克隆抗体上的应用。在这些特定的仪器参数下,与ETD相比,EThcD产生部分互补的碎片化模式,尤其在蛋白质末端增加了整体序列覆盖率。