惯性与到达时间测距传感器融合

Inertial and time-of-arrival ranging sensor fusion.

作者信息

Vasilyev Paul, Pearson Sean, El-Gohary Mahmoud, Aboy Mateo, McNames James

机构信息

APDM, Inc., 2828 SW Corbett Avenue, Portland, OR, USA.

APDM, Inc., 2828 SW Corbett Avenue, Portland, OR, USA.

出版信息

Gait Posture. 2017 May;54:1-7. doi: 10.1016/j.gaitpost.2017.02.011. Epub 2017 Feb 20.

Abstract

Wearable devices with embedded kinematic sensors including triaxial accelerometers, gyroscopes, and magnetometers are becoming widely used in applications for tracking human movement in domains that include sports, motion gaming, medicine, and wellness. The kinematic sensors can be used to estimate orientation, but can only estimate changes in position over short periods of time. We developed a prototype sensor that includes ultra wideband ranging sensors and kinematic sensors to determine the feasibility of fusing the two sensor technologies to estimate both orientation and position. We used a state space model and applied the unscented Kalman filter to fuse the sensor information. Our results demonstrate that it is possible to estimate orientation and position with less error than is possible with either sensor technology alone. In our experiment we obtained a position root mean square error of 5.2cm and orientation error of 4.8° over a 15min recording.

摘要

带有嵌入式运动传感器(包括三轴加速度计、陀螺仪和磁力计)的可穿戴设备正广泛应用于体育、运动游戏、医学和健康等领域的人体运动跟踪。运动传感器可用于估计方向,但只能在短时间内估计位置变化。我们开发了一种原型传感器,它包括超宽带测距传感器和运动传感器,以确定融合这两种传感器技术来估计方向和位置的可行性。我们使用状态空间模型并应用无迹卡尔曼滤波器来融合传感器信息。我们的结果表明,与单独使用任何一种传感器技术相比,融合两种传感器技术能够以更小的误差估计方向和位置。在我们的实验中,15分钟的记录期内,位置均方根误差为5.2厘米,方向误差为4.8°。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索