Suppr超能文献

运动医学中的可穿戴性能设备

Wearable Performance Devices in Sports Medicine.

作者信息

Li Ryan T, Kling Scott R, Salata Michael J, Cupp Sean A, Sheehan Joseph, Voos James E

机构信息

Department of Orthopaedic Surgery, University Hospitals Case Medical Center, Cleveland, Ohio.

Department of Orthopaedic Surgery, University Hospitals Case Medical Center, Cleveland, Ohio

出版信息

Sports Health. 2016 Jan-Feb;8(1):74-8. doi: 10.1177/1941738115616917. Epub 2015 Nov 11.

Abstract

CONTEXT

Wearable performance devices and sensors are becoming more readily available to the general population and athletic teams. Advances in technology have allowed individual endurance athletes, sports teams, and physicians to monitor functional movements, workloads, and biometric markers to maximize performance and minimize injury. Movement sensors include pedometers, accelerometers/gyroscopes, and global positioning satellite (GPS) devices. Physiologic sensors include heart rate monitors, sleep monitors, temperature sensors, and integrated sensors. The purpose of this review is to familiarize health care professionals and team physicians with the various available types of wearable sensors, discuss their current utilization, and present future applications in sports medicine.

EVIDENCE ACQUISITION

Data were obtained from peer-reviewed literature through a search of the PubMed database. Included studies searched development, outcomes, and validation of wearable performance devices such as GPS, accelerometers, and physiologic monitors in sports.

STUDY DESIGN

Clinical review.

LEVEL OF EVIDENCE

Level 4.

RESULTS

Wearable sensors provide a method of monitoring real-time physiologic and movement parameters during training and competitive sports. These parameters can be used to detect position-specific patterns in movement, design more efficient sports-specific training programs for performance optimization, and screen for potential causes of injury. More recent advances in movement sensors have improved accuracy in detecting high-acceleration movements during competitive sports.

CONCLUSION

Wearable devices are valuable instruments for the improvement of sports performance. Evidence for use of these devices in professional sports is still limited. Future developments are needed to establish training protocols using data from wearable devices.

摘要

背景

可穿戴性能设备和传感器正越来越容易被普通大众和运动队所使用。技术的进步使耐力运动员个体、运动队和医生能够监测功能动作、工作量和生物特征标记,以最大限度地提高运动表现并减少损伤。运动传感器包括计步器、加速度计/陀螺仪和全球定位卫星(GPS)设备。生理传感器包括心率监测器、睡眠监测器、温度传感器和集成传感器。本综述的目的是让医疗保健专业人员和队医熟悉各种可用的可穿戴传感器类型,讨论它们目前的使用情况,并介绍其在运动医学中的未来应用。

证据获取

通过检索PubMed数据库从同行评审文献中获取数据。纳入的研究检索了可穿戴性能设备(如GPS、加速度计和生理监测器)在运动中的开发、结果和验证情况。

研究设计

临床综述。

证据水平

4级。

结果

可穿戴传感器提供了一种在训练和竞技运动期间监测实时生理和运动参数的方法。这些参数可用于检测特定位置的运动模式,设计更高效的针对特定运动的训练计划以优化运动表现,并筛查潜在的损伤原因。运动传感器的最新进展提高了在竞技运动中检测高加速运动的准确性。

结论

可穿戴设备是提高运动表现的有价值工具。这些设备在职业体育中的使用证据仍然有限。需要未来的发展来建立使用可穿戴设备数据的训练方案。

相似文献

1
Wearable Performance Devices in Sports Medicine.
Sports Health. 2016 Jan-Feb;8(1):74-8. doi: 10.1177/1941738115616917. Epub 2015 Nov 11.
2
The Use of Wearable Microsensors to Quantify Sport-Specific Movements.
Sports Med. 2015 Jul;45(7):1065-81. doi: 10.1007/s40279-015-0332-9.
3
Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review.
Sports Med. 2013 Oct;43(10):1025-42. doi: 10.1007/s40279-013-0069-2.
5
Blood Biomarkers in Sports Medicine and Performance and the Future of Metabolomics.
Methods Mol Biol. 2019;1978:431-446. doi: 10.1007/978-1-4939-9236-2_26.
6
Practitioner Usage, Applications, and Understanding of Wearable GPS and Accelerometer Technology in Team Sports.
J Strength Cond Res. 2024 Jul 1;38(7):e373-e382. doi: 10.1519/JSC.0000000000004781. Epub 2024 Apr 9.
7
Workload a-WEAR-ness: Monitoring Workload in Team Sports With Wearable Technology. A Scoping Review.
J Orthop Sports Phys Ther. 2020 Oct;50(10):549-563. doi: 10.2519/jospt.2020.9753.

引用本文的文献

7
Functional characteristics of sleep monitoring devices in China: A real-world cross-sectional study.
Digit Health. 2025 Feb 18;11:20552076251320752. doi: 10.1177/20552076251320752. eCollection 2025 Jan-Dec.
8
Automated Detection of Change of Direction in Basketball Players Using Xsens Motion Tracking.
Sensors (Basel). 2025 Feb 5;25(3):942. doi: 10.3390/s25030942.
9
A Muscle Physiology-Based Framework for Quantifying Training Load in Resistance Exercises.
Sports (Basel). 2025 Jan 9;13(1):13. doi: 10.3390/sports13010013.
10
Any old iron, man.
Exp Physiol. 2025 Jan;110(1):6-10. doi: 10.1113/EP092295. Epub 2024 Oct 28.

本文引用的文献

1
Non-invasive wearable electrochemical sensors: a review.
Trends Biotechnol. 2014 Jul;32(7):363-71. doi: 10.1016/j.tibtech.2014.04.005. Epub 2014 May 19.
2
Validity of consumer-based physical activity monitors.
Med Sci Sports Exerc. 2014 Sep;46(9):1840-8. doi: 10.1249/MSS.0000000000000287.
3
Bioharness(™) multivariable monitoring device: part. I: validity.
J Sports Sci Med. 2012 Sep 1;11(3):400-8. eCollection 2012.
4
The acceleration dependent validity and reliability of 10 Hz GPS.
J Sci Med Sport. 2014 Sep;17(5):562-6. doi: 10.1016/j.jsams.2013.08.005. Epub 2013 Aug 29.
6
Heat- and cold-induced injuries in athletes: evaluation and management.
J Am Acad Orthop Surg. 2012 Dec;20(12):744-54. doi: 10.5435/JAAOS-20-12-744.
7
Influence of the opposing team on the physical demands of elite rugby league match play.
J Strength Cond Res. 2013 Jun;27(6):1629-35. doi: 10.1519/JSC.0b013e318274f30e.
8
Quantifying external load in Australian football matches and training using accelerometers.
Int J Sports Physiol Perform. 2013 Jan;8(1):44-51. doi: 10.1123/ijspp.8.1.44. Epub 2012 Jul 31.
9
The validity and reliability of 5-Hz global positioning system units to measure team sport movement demands.
J Strength Cond Res. 2012 Mar;26(3):758-65. doi: 10.1519/JSC.0b013e318225f161.
10
Redefining the roles of sensors in objective physical activity monitoring.
Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S13-23. doi: 10.1249/MSS.0b013e3182399bc8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验