Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom.
Department of Materials Science and Engineering, University of Wisconsin , Madison, Wisconsin 53705, United States.
ACS Nano. 2017 Mar 28;11(3):3355-3364. doi: 10.1021/acsnano.7b00724. Epub 2017 Mar 1.
Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synthesized via van der Waals epitaxy by chemical vapor deposition method. At room temperature, photon was applied as a knob to regulate the kinetics of spinodal decomposition and classic coarsening. By this approach, halide perovskite double heterostructures were created carrying epitaxial interfaces and outstanding optical properties. Reduced Fröhlich electron-phonon coupling was discovered in coherent halide double heterostructure, which is hypothetically attributed to the classic phonon confinement effect widely existing in III-V double heterostructures. As a proof-of-concept, our results suggest that halide perovskite-based epitaxial heterostructures may be promising for high-performance and low-cost optoelectronics, electro-optics, and microelectronics. Thus, ultimately, for practical device applications, it may be worthy to pursue these heterostructures via conventional vapor phase epitaxy approaches widely practised in III-V field.
III-V 族半导体外延异质结构是现代微电子学、电光学和光电子学的关键组成部分。卤化物钙钛矿材料具有优越的半导体性能,作为相干异质结构器件的有前途的候选材料而备受关注。在本报告中,我们提出并实验实现了旋节分解,以在卤化物钙钛矿体系中制备外延双异质结构。通过化学气相沉积法的范德华外延,合成了纯净的外延混合卤化物钙钛矿棒和薄膜。在室温下,光子被用作调节旋节分解和经典粗化动力学的旋钮。通过这种方法,制备了具有外延界面和出色光学性能的卤化物钙钛矿双异质结构。在相干卤化物双异质结构中发现了弗洛里希电子-声子耦合的减少,这可以归因于 III-V 双异质结构中广泛存在的经典声子限制效应。作为概念验证,我们的结果表明,基于卤化物钙钛矿的外延异质结构可能有望用于高性能和低成本的光电、电光和微电子学。因此,对于实际的器件应用,通过 III-V 领域广泛应用的传统气相外延方法来探索这些异质结构可能是值得的。