Laage Damien, Elsaesser Thomas, Hynes James T
École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS , Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France.
Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS , PASTEUR, 75005 Paris, France.
Chem Rev. 2017 Aug 23;117(16):10694-10725. doi: 10.1021/acs.chemrev.6b00765. Epub 2017 Mar 1.
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water.
生物分子的结构和功能受到其水化层的强烈影响。水化水分子的结构波动和分子激发在空间和时间上涵盖了广泛的范围,从单个水分子到更大的水体,从飞秒到微秒的时间尺度。理论和分子动力学模拟以及超快振动光谱学的最新进展,使人们对水结构的波动、基本水运动、水化生物界面处的电场以及振动弛豫和能量耗散过程有了新的详细认识。在这里,我们综述了理论和实验方面的最新进展,重点关注水化的DNA、蛋白质和磷脂,并将水化层中的动力学与 bulk water 进行比较。 (注:“bulk water”直译为“本体水”,可能在特定语境下有更合适的专业中文表述,这里先按原文翻译)