Le Hon Nhien, Nguyen Duy Khanh, Dang Minh Triet, Nguyen Huyen Trinh, Dao Thi Bang Tam, Nguyen Trung Do, Ha Thuc Chi Nhan, Le Van Hieu
Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, 700000, Vietnam.
Vietnam National University, Ho Chi Minh City, 700000, Vietnam.
Beilstein J Nanotechnol. 2025 Jun 4;16:806-822. doi: 10.3762/bjnano.16.61. eCollection 2025.
Natural hydration shells are discovered to play an essential role in the structure and function of biomolecules (deoxyribonucleic acid, protein, and phospholipid membrane). Hydration layers are also important to the structure and property of artificial graphene-based materials. Our recent works prove that graphene-based hydrogels are supramolecular hydration structures that preserve graphene nanosheets from the restacking through hydrophobic force, van der Waals force, and π-π interaction. In this manuscript, density functional theory and high-performance computing (HPC) are used for modeling and calculating van der Waals force between graphene nanosheets in water-intercalated AB bilayer graphene structures. A layer of water molecules significantly decreases the intersheet van der Waals force. A novel hydrogel of graphene oxide-silica gel-zinc hydroxide (GO-SG-ZH) is experimentally synthesized to demonstrate the advantages of hydrated hydrogel structure in comparison with dry powder structure. The synthesis of graphene-based hydrogels is a green chemistry approach to attain extraordinary properties of graphene-based nanostructures. Analytical characterizations exhibited moisture contents, water evaporation rates, three-dimensional structures, elemental compositions, aqueous dispersibility, and antibacterial activities. Hydration shells on graphene-based nanosheets in the hydrogel increase intersheet distances to prevent the stacking of the nanostructures. Hydration layers in the GO-SG-ZH hydrogel was also lubricative for direct brush coating on polymer substrates, typically polylactide films. Interfacial adhesion of graphene-based nanosheets on polylactide substrates made the antibacterial coating stable for several application purposes. In general, supramolecular graphene-based hydrogels are bioinspired hydration structures to advance nanoscale properties and nanotechnology applications.
人们发现天然水合壳在生物分子(脱氧核糖核酸、蛋白质和磷脂膜)的结构和功能中起着至关重要的作用。水合层对基于石墨烯的人工材料的结构和性质也很重要。我们最近的研究表明,基于石墨烯的水凝胶是超分子水合结构,通过疏水作用、范德华力和π-π相互作用防止石墨烯纳米片重新堆叠。在本论文中,密度泛函理论和高性能计算(HPC)被用于对水插层AB双层石墨烯结构中石墨烯纳米片之间的范德华力进行建模和计算。一层水分子显著降低了片层间的范德华力。通过实验合成了一种新型的氧化石墨烯-硅胶-氢氧化锌(GO-SG-ZH)水凝胶,以证明水合水凝胶结构相对于干粉结构的优势。基于石墨烯的水凝胶的合成是一种绿色化学方法,可实现基于石墨烯的纳米结构的非凡性能。分析表征显示了含水量、水蒸发速率、三维结构、元素组成、水分散性和抗菌活性。水凝胶中基于石墨烯的纳米片上的水合壳增加了片层间距离,以防止纳米结构的堆叠。GO-SG-ZH水凝胶中的水合层对于直接刷涂在聚合物基材(通常是聚乳酸薄膜)上也具有润滑性。基于石墨烯的纳米片在聚乳酸基材上的界面粘附使得抗菌涂层在多种应用目的下都很稳定。总的来说,基于超分子石墨烯的水凝胶是受生物启发的水合结构,可提升纳米级性能和纳米技术应用。