Suppr超能文献

升高的非线性作为应激下种群动态变化的一个指标。

Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

作者信息

Dakos Vasilis, Glaser Sarah M, Hsieh Chih-Hao, Sugihara George

机构信息

Institute of Integrative Biology, Center for Adaptation to a Changing Environment, ETH Zurich, Zurich, Switzerland

Korbel School of International Studies, University of Denver, Denver, USA.

出版信息

J R Soc Interface. 2017 Mar;14(128). doi: 10.1098/rsif.2016.0845.

Abstract

Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress.

摘要

种群偶尔会经历突然变化,如局部灭绝、数量大幅下降或从稳定动态转变为剧烈的不规则波动。尽管这些变化大多具有重要的生态影响,有时还会产生经济影响,但它们仍然极难提前察觉。在此,我们研究了在各种转变过程中处于压力下的种群稳定性变化。我们使用里克型模型模拟从稳定的平衡点动态向周期性和不规则的繁荣-萧条振荡的转变,以及不同吸引子之间的突然转变。我们的目标是根据种群动态非线性的变化,在这些转变发生之前推断种群稳定性的丧失。我们通过比较直接从观测时间序列拟合到重构吸引子上的线性模型和非线性模型的预测性能来衡量非线性。我们将非线性与其他建议的不稳定领先指标(方差和自相关)进行比较。我们发现,在转变之前,非线性和方差以相似的方式增加。相比之下,自相关受到振荡的强烈影响。最后,我们在渔业种群数据集中检验了这些理论模式。我们的结果表明,升高的非线性可作为一个额外指标,用于推断处于压力下的种群动态变化。

相似文献

1
Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.
J R Soc Interface. 2017 Mar;14(128). doi: 10.1098/rsif.2016.0845.
2
Indicators of transitions in biological systems.
Ecol Lett. 2018 Jun;21(6):905-919. doi: 10.1111/ele.12948. Epub 2018 Mar 30.
3
Resilience and tipping points of an exploited fish population over six decades.
Glob Chang Biol. 2015 May;21(5):1834-47. doi: 10.1111/gcb.12845. Epub 2015 Feb 6.
5
Rising catch variability preceded historical fisheries collapses in Alaska.
Ecol Appl. 2013 Sep;23(6):1475-87. doi: 10.1890/12-0670.1.
6
Resilience and regime shifts in a marine biodiversity hotspot.
Sci Rep. 2017 Oct 20;7(1):13647. doi: 10.1038/s41598-017-13852-9.
7
Fluctuations of fish populations and the magnifying effects of fishing.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7075-80. doi: 10.1073/pnas.1100334108. Epub 2011 Apr 11.
8
Predicting shifts in dynamics of cannibalistic field populations using individual-based models.
Proc Biol Sci. 2004 Dec 7;271(1556):2489-93. doi: 10.1098/rspb.2004.2854.
9
Changing skewness: an early warning signal of regime shifts in ecosystems.
Ecol Lett. 2008 May;11(5):450-60. doi: 10.1111/j.1461-0248.2008.01160.x. Epub 2008 Feb 12.
10
Temperature increase drives critical slowing down of fish ecosystems.
PLoS One. 2021 Oct 20;16(10):e0246222. doi: 10.1371/journal.pone.0246222. eCollection 2021.

引用本文的文献

1
Identifying fish populations prone to abrupt shifts via dynamical footprint analysis.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2505461122. doi: 10.1073/pnas.2505461122. Epub 2025 Aug 18.
2
Revealing unseen dynamical regimes of ecosystems from population time-series data.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2416637122. doi: 10.1073/pnas.2416637122. Epub 2025 Jun 13.
3
Detecting shifts in nonlinear dynamics using Empirical Dynamic Modeling with Nested-Library Analysis.
PLoS Comput Biol. 2024 Jan 5;20(1):e1011759. doi: 10.1371/journal.pcbi.1011759. eCollection 2024 Jan.
4
Quantifying resilience and the risk of regime shifts under strong correlated noise.
PNAS Nexus. 2022 Dec 24;2(2):pgac296. doi: 10.1093/pnasnexus/pgac296. eCollection 2023 Feb.
5
Anticipating the occurrence and type of critical transitions.
Sci Adv. 2023 Jan 6;9(1):eabq4558. doi: 10.1126/sciadv.abq4558.
6
A novel nonlinear analysis of blood flow dynamics applied to the human lung.
J Appl Physiol (1985). 2022 Jun 1;132(6):1546-1559. doi: 10.1152/japplphysiol.00715.2021. Epub 2022 Apr 14.
7
Variations in stability revealed by temporal asymmetries in contraction of phase space flow.
Sci Rep. 2021 Mar 11;11(1):5730. doi: 10.1038/s41598-021-84865-8.
8
Detecting and distinguishing tipping points using spectral early warning signals.
J R Soc Interface. 2020 Sep;17(170):20200482. doi: 10.1098/rsif.2020.0482. Epub 2020 Sep 30.
9
Nonlinear population dynamics are ubiquitous in animals.
Nat Ecol Evol. 2020 Jan;4(1):75-81. doi: 10.1038/s41559-019-1052-6. Epub 2019 Dec 9.
10
Insights into coral reef benthic dynamics from nonlinear spatial forecasting.
J R Soc Interface. 2019 Apr 26;16(153):20190047. doi: 10.1098/rsif.2019.0047.

本文引用的文献

1
Theory of early warning signals of disease emergenceand leading indicators of elimination.
Theor Ecol. 2013;6(3):333-357. doi: 10.1007/s12080-013-0185-5. Epub 2013 May 31.
2
A universal law of the characteristic return time near thresholds.
Oecologia. 1984 Dec;65(1):101-107. doi: 10.1007/BF00384470.
4
Improving the forecast for biodiversity under climate change.
Science. 2016 Sep 9;353(6304). doi: 10.1126/science.aad8466.
5
Tracking and forecasting ecosystem interactions in real time.
Proc Biol Sci. 2016 Jan 13;283(1822). doi: 10.1098/rspb.2015.2258.
6
Changing recruitment capacity in global fish stocks.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):134-9. doi: 10.1073/pnas.1504709112. Epub 2015 Dec 14.
7
Factors influencing the detectability of early warning signals of population collapse.
Am Nat. 2015 Jul;186(1):50-8. doi: 10.1086/681573. Epub 2015 May 7.
8
The ecological forecast horizon, and examples of its uses and determinants.
Ecol Lett. 2015 Jul;18(7):597-611. doi: 10.1111/ele.12443. Epub 2015 May 7.
9
Equation-free modeling unravels the behavior of complex ecological systems.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3856-7. doi: 10.1073/pnas.1503154112. Epub 2015 Mar 17.
10
Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):E1569-76. doi: 10.1073/pnas.1417063112. Epub 2015 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验