Suppr超能文献

通过动态足迹分析识别易发生突变的鱼类种群。

Identifying fish populations prone to abrupt shifts via dynamical footprint analysis.

作者信息

Cano Alejandro V, Jensen Olaf P, Dakos Vasilis

机构信息

Institut des Sciences de l'Évolution de Montpellier, Univ. de Montpellier, CNRS, Institut de recherche pour le développement, Montpellier 34090, France.

Center for Limnology, University of Wisconsin-Madison, Madison, WI 53706.

出版信息

Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2505461122. doi: 10.1073/pnas.2505461122. Epub 2025 Aug 18.

Abstract

Fish population biomass fluctuates through time in ways that may be either gradual or abrupt. While abrupt shifts in fish population productivity have been shown to be common, they are rarely integrated into stock assessment or fishery management, in part because of the difficulty of predicting when abrupt shifts may occur and which stocks are prone to such shifts. In this study, we address the latter challenge by designing a mechanism-agnostic context-specific approach that is based on exploiting the dynamical properties of fish population fluctuations for detecting potential abrupt shifts. We use time series of fish population biomass from three global datasets, first, to classify their shapes into abrupt and nonabrupt (linear, quadratic, or no change) classes, and, second, to predict classified shapes based only on their dynamical footprint (a set of metrics such as variance, autocorrelation, etc, of the time series). We find that populations prone to abrupt shifts can be detected with moderate accuracy in the three datasets in spite of data limitations. In total, we identified 50 populations at risk of future abrupt shifts across 11 different Large Marine Ecosystem regions. Our context-specific approach offers critical insights into population stability and enables the identification of stocks whose dynamical properties suggest that they would benefit from more precautionary management.

摘要

鱼类种群生物量会随时间波动,其波动方式可能是渐进的,也可能是突然的。虽然鱼类种群生产力的突然变化已被证明很常见,但它们很少被纳入种群评估或渔业管理中,部分原因是难以预测突然变化可能何时发生以及哪些种群容易出现这种变化。在本研究中,我们通过设计一种与机制无关的特定情境方法来应对后一个挑战,该方法基于利用鱼类种群波动的动态特性来检测潜在的突然变化。我们使用来自三个全球数据集的鱼类种群生物量时间序列,首先将其形状分类为突然变化和非突然变化(线性、二次或无变化)类别,其次仅根据其动态足迹(时间序列的一组指标,如方差、自相关等)来预测分类形状。我们发现,尽管存在数据限制,但在这三个数据集中仍能以适度的准确性检测出容易出现突然变化的种群。我们总共在11个不同的大型海洋生态系统区域识别出50个面临未来突然变化风险的种群。我们的特定情境方法为种群稳定性提供了关键见解,并能够识别出其动态特性表明它们将受益于更谨慎管理的种群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b664/12403094/c9b1b9f4499c/pnas.2505461122fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验