Suppr超能文献

用于准确识别创伤性脑损伤儿童神经外科和重症监护事件的工具的开发与前瞻性验证

Development and Prospective Validation of Tools to Accurately Identify Neurosurgical and Critical Care Events in Children With Traumatic Brain Injury.

作者信息

Bennett Tellen D, DeWitt Peter E, Dixon Rebecca R, Kartchner Cory, Sierra Yamila, Ladell Diane, Srivastava Rajendu, Riva-Cambrin Jay, Kempe Allison, Runyan Desmond K, Keenan Heather T, Dean J Michael

机构信息

1Section of Pediatric Critical Care, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO. 2Children's Hospital Colorado, Aurora, CO. 3Adult and Child Consortium for Health Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO. 4Division of Pediatric Critical Care, Department of Pediatrics, Colorado School of Public Health, Aurora, CO. 5Pediatric Critical Care, University of Utah School of Medicine, Salt Lake City, UT. 6Department of Bioinformatics and Biostatistics, Primary Children's Hospital, Salt Lake City, UT. 7Division of Pediatric Inpatient Medicine, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT. 8Office of Research, Intermountain Healthcare, Salt Lake City, UT. 9Division of Pediatric Neurosurgery, Department of Clinical Neurosciences, University of Calgary and Alberta Children's Hospital, Calgary, AB, Canada. 10Department of Pediatrics, Kempe Center, University of Colorado School of Medicine, Aurora, CO.

出版信息

Pediatr Crit Care Med. 2017 May;18(5):442-451. doi: 10.1097/PCC.0000000000001120.

Abstract

OBJECTIVE

To develop and validate case definitions (computable phenotypes) to accurately identify neurosurgical and critical care events in children with traumatic brain injury.

DESIGN

Prospective observational cohort study, May 2013 to September 2015.

SETTING

Two large U.S. children's hospitals with level 1 Pediatric Trauma Centers.

PATIENTS

One hundred seventy-four children less than 18 years old admitted to an ICU after traumatic brain injury.

MEASUREMENTS AND MAIN RESULTS

Prospective data were linked to database codes for each patient. The outcomes were prospectively identified acute traumatic brain injury, intracranial pressure monitor placement, craniotomy or craniectomy, vascular catheter placement, invasive mechanical ventilation, and new gastrostomy tube or tracheostomy placement. Candidate predictors were database codes present in administrative, billing, or trauma registry data. For each clinical event, we developed and validated penalized regression and Boolean classifiers (models to identify clinical events that take database codes as predictors). We externally validated the best model for each clinical event. The primary model performance measure was accuracy, the percent of test patients correctly classified. The cohort included 174 children who required ICU admission after traumatic brain injury. Simple Boolean classifiers were greater than or equal to 94% accurate for seven of nine clinical diagnoses and events. For central venous catheter placement, no classifier achieved 90% accuracy. Classifier accuracy was dependent on available data fields. Five of nine classifiers were acceptably accurate using only administrative data but three required trauma registry fields and two required billing data.

CONCLUSIONS

In children with traumatic brain injury, computable phenotypes based on simple Boolean classifiers were highly accurate for most neurosurgical and critical care diagnoses and events. The computable phenotypes we developed and validated can be used in any observational study of children with traumatic brain injury and can reasonably be applied in studies of these interventions in other patient populations.

摘要

目的

制定并验证病例定义(可计算表型),以准确识别创伤性脑损伤患儿的神经外科和重症监护事件。

设计

前瞻性观察队列研究,2013年5月至2015年9月。

地点

美国两家设有一级儿科创伤中心的大型儿童医院。

患者

174名18岁以下创伤性脑损伤后入住重症监护病房的儿童。

测量与主要结果

前瞻性数据与每位患者的数据库编码相关联。前瞻性确定的结局包括急性创伤性脑损伤、颅内压监测器置入、开颅手术或颅骨切除术、血管导管置入、有创机械通气以及新的胃造口管或气管造口管置入。候选预测因素为行政、计费或创伤登记数据中存在的数据库编码。对于每一项临床事件,我们开发并验证了惩罚回归和布尔分类器(以数据库编码作为预测因素来识别临床事件的模型)。我们对每项临床事件的最佳模型进行了外部验证。主要的模型性能指标是准确性,即正确分类的测试患者百分比。该队列包括174名创伤性脑损伤后需要入住重症监护病房的儿童。对于九项临床诊断和事件中的七项,简单布尔分类器的准确率大于或等于94%。对于中心静脉导管置入,没有分类器达到90%的准确率。分类器的准确性取决于可用的数据字段。九项分类器中有五项仅使用行政数据时准确率可接受,但三项需要创伤登记字段,两项需要计费数据。

结论

在创伤性脑损伤患儿中,基于简单布尔分类器的可计算表型对于大多数神经外科和重症监护诊断及事件具有高度准确性。我们开发并验证的可计算表型可用于任何创伤性脑损伤患儿的观察性研究,并可合理应用于其他患者群体的这些干预措施研究。

相似文献

3
Seizures in Children With Severe Traumatic Brain Injury.重度创伤性脑损伤患儿的癫痫发作
Pediatr Crit Care Med. 2017 Jan;18(1):54-63. doi: 10.1097/PCC.0000000000000948.

引用本文的文献

6
Untangling the complexity of multimorbidity with machine learning.运用机器学习厘清多种共病的复杂性。
Mech Ageing Dev. 2020 Sep;190:111325. doi: 10.1016/j.mad.2020.111325. Epub 2020 Aug 6.
9
Data Science for Child Health.儿童健康数据科学
J Pediatr. 2019 May;208:12-22. doi: 10.1016/j.jpeds.2018.12.041. Epub 2019 Jan 25.
10
The Burden of Pediatric Neurocritical Care in the United States.美国儿科神经危重症护理的负担。
Pediatr Neurol. 2018 Dec;89:31-38. doi: 10.1016/j.pediatrneurol.2018.07.013. Epub 2018 Aug 4.

本文引用的文献

9
Existing data analysis in pediatric critical care research.儿科危重病研究中的现有数据分析。
Front Pediatr. 2014 Jul 29;2:79. doi: 10.3389/fped.2014.00079. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验