Suppr超能文献

基于丙泊酚麻醉效应的人类听觉皮层区域的脑电描记术描绘

Electrocorticographic delineation of human auditory cortical fields based on effects of propofol anesthesia.

作者信息

Nourski Kirill V, Banks Matthew I, Steinschneider Mitchell, Rhone Ariane E, Kawasaki Hiroto, Mueller Rashmi N, Todd Michael M, Howard Matthew A

机构信息

Department of Neurosurgery, The University of Iowa, Iowa City, IA, USA.

Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI, USA.

出版信息

Neuroimage. 2017 May 15;152:78-93. doi: 10.1016/j.neuroimage.2017.02.061. Epub 2017 Feb 27.

Abstract

The functional organization of human auditory cortex remains incompletely characterized. While the posteromedial two thirds of Heschl's gyrus (HG) is generally considered to be part of core auditory cortex, additional subdivisions of HG remain speculative. To further delineate the hierarchical organization of human auditory cortex, we investigated regional heterogeneity in the modulation of auditory cortical responses under varying depths of anesthesia induced by propofol. Non-invasive studies have shown that propofol differentially affects auditory cortical activity, with a greater impact on non-core areas. Subjects were neurosurgical patients undergoing removal of intracranial electrodes placed to identify epileptic foci. Stimuli were 50Hz click trains, presented continuously during an awake baseline period, and subsequently, while propofol infusion was incrementally titrated to induce general anesthesia. Electrocorticographic recordings were made with depth electrodes implanted in HG and subdural grid electrodes implanted over superior temporal gyrus (STG). Depth of anesthesia was monitored using spectral entropy. Averaged evoked potentials (AEPs), frequency-following responses (FFRs) and high gamma (70-150Hz) event-related band power were used to characterize auditory cortical activity. Based on the changes in AEPs and FFRs during the induction of anesthesia, posteromedial HG could be divided into two subdivisions. In the most posteromedial aspect of the gyrus, the earliest AEP deflections were preserved and FFRs increased during induction. In contrast, the remainder of the posteromedial HG exhibited attenuation of both the AEP and the FFR. The anterolateral HG exhibited weaker activation characterized by broad, low-voltage AEPs and the absence of FFRs. Lateral STG exhibited limited activation by click trains, and FFRs there diminished during induction. Sustained high gamma activity was attenuated in the most posteromedial portion of HG, and was absent in all other regions. These differential patterns of auditory cortical activity during the induction of anesthesia may serve as useful physiological markers for field delineation. In this study, the posteromedial HG could be parcellated into at least two subdivisions. Preservation of the earliest AEP deflections and FFRs in the posteromedial HG likely reflects the persistence of feedforward synaptic activity generated by inputs from subcortical auditory pathways, including the medial geniculate nucleus.

摘要

人类听觉皮层的功能组织仍未得到充分表征。虽然颞横回(HG)的后内侧三分之二通常被认为是核心听觉皮层的一部分,但HG的其他细分仍存在推测性。为了进一步描绘人类听觉皮层的层次组织,我们研究了在丙泊酚诱导的不同麻醉深度下听觉皮层反应调制中的区域异质性。非侵入性研究表明,丙泊酚对听觉皮层活动有不同影响,对非核心区域影响更大。受试者为接受颅内电极植入以确定癫痫病灶切除术的神经外科患者。刺激为50Hz的点击序列,在清醒基线期持续呈现,随后在逐渐滴定丙泊酚输注以诱导全身麻醉时呈现。使用深度电极植入HG和硬膜下网格电极植入颞上回(STG)进行皮质电图记录。使用频谱熵监测麻醉深度。平均诱发电位(AEP)、频率跟随反应(FFR)和高伽马(70 - 150Hz)事件相关带功率用于表征听觉皮层活动。根据麻醉诱导期间AEP和FFR的变化,后内侧HG可分为两个细分区域。在回的最后内侧部分,最早的AEP偏转得以保留,并且在诱导期间FFR增加。相比之下,后内侧HG的其余部分表现出AEP和FFR均衰减。前外侧HG表现出较弱的激活,其特征为广泛的低电压AEP且无FFR。外侧STG对点击序列的激活有限,并且在诱导期间那里的FFR减弱。持续的高伽马活动在HG的最后内侧部分减弱,并且在所有其他区域均不存在。麻醉诱导期间这些听觉皮层活动的差异模式可能作为用于区域划分的有用生理标记。在本研究中,后内侧HG可被分割为至少两个细分区域。后内侧HG中最早的AEP偏转和FFR的保留可能反映了由包括内侧膝状体核在内的皮层下听觉通路输入产生的前馈突触活动的持续性。

相似文献

1
Electrocorticographic delineation of human auditory cortical fields based on effects of propofol anesthesia.
Neuroimage. 2017 May 15;152:78-93. doi: 10.1016/j.neuroimage.2017.02.061. Epub 2017 Feb 27.
2
Auditory Predictive Coding across Awareness States under Anesthesia: An Intracranial Electrophysiology Study.
J Neurosci. 2018 Sep 26;38(39):8441-8452. doi: 10.1523/JNEUROSCI.0967-18.2018. Epub 2018 Aug 20.
3
Functional organization of human auditory cortex: investigation of response latencies through direct recordings.
Neuroimage. 2014 Nov 1;101:598-609. doi: 10.1016/j.neuroimage.2014.07.004. Epub 2014 Jul 12.
4
Coding of repetitive transients by auditory cortex on Heschl's gyrus.
J Neurophysiol. 2009 Oct;102(4):2358-74. doi: 10.1152/jn.91346.2008. Epub 2009 Aug 12.
5
Processing of auditory novelty across the cortical hierarchy: An intracranial electrophysiology study.
Neuroimage. 2018 Dec;183:412-424. doi: 10.1016/j.neuroimage.2018.08.027. Epub 2018 Aug 13.
6
Functional connections between auditory cortex on Heschl's gyrus and on the lateral superior temporal gyrus in humans.
J Neurophysiol. 2003 Dec;90(6):3750-63. doi: 10.1152/jn.00500.2003. Epub 2003 Sep 10.
8
Gamma Activation and Alpha Suppression within Human Auditory Cortex during a Speech Classification Task.
J Neurosci. 2022 Jun 22;42(25):5034-5046. doi: 10.1523/JNEUROSCI.2187-21.2022. Epub 2022 May 9.
9
Differential responses to spectrally degraded speech within human auditory cortex: An intracranial electrophysiology study.
Hear Res. 2019 Jan;371:53-65. doi: 10.1016/j.heares.2018.11.009. Epub 2018 Nov 22.
10
Functional localization of auditory cortical fields of human: click-train stimulation.
Hear Res. 2008 Apr;238(1-2):12-24. doi: 10.1016/j.heares.2007.11.012. Epub 2007 Dec 8.

引用本文的文献

2
Insights into epileptic aphasia: Intracranial recordings in a child with a left insular ganglioglioma.
Epilepsy Behav Rep. 2024 Oct 3;28:100715. doi: 10.1016/j.ebr.2024.100715. eCollection 2024.
3
5
Sleep-like changes in neural processing emerge during sleep deprivation in early auditory cortex.
Curr Biol. 2023 Jul 24;33(14):2925-2940.e6. doi: 10.1016/j.cub.2023.06.022. Epub 2023 Jun 28.
6
Passive functional mapping of receptive language cortex during general anesthesia using electrocorticography.
Clin Neurophysiol. 2023 Mar;147:31-44. doi: 10.1016/j.clinph.2022.11.021. Epub 2022 Dec 22.
8
Arousal State-Dependence of Interactions Between Short- and Long-Term Auditory Novelty Responses in Human Subjects.
Front Hum Neurosci. 2021 Oct 1;15:737230. doi: 10.3389/fnhum.2021.737230. eCollection 2021.
10
Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11770-11780. doi: 10.1073/pnas.1917251117. Epub 2020 May 12.

本文引用的文献

1
Localization of musicogenic epilepsy to Heschl's gyrus and superior temporal plane: case report.
J Neurosurg. 2018 Jul;129(1):157-164. doi: 10.3171/2017.3.JNS162559. Epub 2017 Sep 15.
2
Maps of the Auditory Cortex.
Annu Rev Neurosci. 2016 Jul 8;39:385-407. doi: 10.1146/annurev-neuro-070815-014045. Epub 2016 Apr 25.
3
Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus.
J Neurosci. 2016 Feb 17;36(7):2302-15. doi: 10.1523/JNEUROSCI.3305-14.2016.
4
The demodulated band transform.
J Neurosci Methods. 2016 Mar 1;261:135-54. doi: 10.1016/j.jneumeth.2015.12.004. Epub 2015 Dec 19.
5
Multi-Scale Entrainment of Coupled Neuronal Oscillations in Primary Auditory Cortex.
Front Hum Neurosci. 2015 Dec 9;9:655. doi: 10.3389/fnhum.2015.00655. eCollection 2015.
7
Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex.
PLoS One. 2015 Sep 14;10(9):e0137915. doi: 10.1371/journal.pone.0137915. eCollection 2015.
8
Disruption of hierarchical predictive coding during sleep.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1353-62. doi: 10.1073/pnas.1501026112. Epub 2015 Mar 3.
9
Invasive recordings in the human auditory cortex.
Handb Clin Neurol. 2015;129:225-44. doi: 10.1016/B978-0-444-62630-1.00013-5.
10
Anatomic organization of the auditory cortex.
Handb Clin Neurol. 2015;129:27-53. doi: 10.1016/B978-0-444-62630-1.00002-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验