Suppr超能文献

PTEN调节谷氨酰胺向嘧啶合成的通量以及对二氢乳清酸脱氢酶抑制的敏感性。

PTEN Regulates Glutamine Flux to Pyrimidine Synthesis and Sensitivity to Dihydroorotate Dehydrogenase Inhibition.

作者信息

Mathur Deepti, Stratikopoulos Elias, Ozturk Sait, Steinbach Nicole, Pegno Sarah, Schoenfeld Sarah, Yong Raymund, Murty Vundavalli V, Asara John M, Cantley Lewis C, Parsons Ramon

机构信息

Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.

Department of Integrated Cellular and Molecular Biology, Columbia University, New York, New York.

出版信息

Cancer Discov. 2017 Apr;7(4):380-390. doi: 10.1158/2159-8290.CD-16-0612. Epub 2017 Mar 2.

Abstract

Metabolic changes induced by oncogenic drivers of cancer contribute to tumor growth and are attractive targets for cancer treatment. Here, we found that increased growth of -mutant cells was dependent on glutamine flux through the pyrimidine synthesis pathway, which created sensitivity to the inhibition of dihydroorotate dehydrogenase, a rate-limiting enzyme for pyrimidine ring synthesis. S-phase -mutant cells showed increased numbers of replication forks, and inhibitors of dihydroorotate dehydrogenase led to chromosome breaks and cell death due to inadequate ATR activation and DNA damage at replication forks. Our findings indicate that enhanced glutamine flux generates vulnerability to dihydroorotate dehydrogenase inhibition, which then causes synthetic lethality in -deficient cells due to inherent defects in ATR activation. Inhibition of dihydroorotate dehydrogenase could thus be a promising therapy for patients with -mutant cancers. We have found a prospective targeted therapy for -deficient tumors, with efficacy and in tumors derived from different tissues. This is based upon the changes in glutamine metabolism, DNA replication, and DNA damage response which are consequences of inactivation of .

摘要

癌症致癌驱动因素诱导的代谢变化有助于肿瘤生长,是癌症治疗的有吸引力的靶点。在这里,我们发现突变细胞生长的增加依赖于通过嘧啶合成途径的谷氨酰胺通量,这使得细胞对二氢乳清酸脱氢酶(嘧啶环合成的限速酶)的抑制产生敏感性。S期突变细胞显示复制叉数量增加,二氢乳清酸脱氢酶抑制剂导致染色体断裂和细胞死亡,原因是ATR激活不足以及复制叉处的DNA损伤。我们的研究结果表明,增强的谷氨酰胺通量使细胞易受二氢乳清酸脱氢酶抑制的影响,进而由于ATR激活的固有缺陷在缺乏的细胞中导致合成致死。因此,抑制二氢乳清酸脱氢酶可能是患有突变癌症患者的一种有前景的治疗方法。我们已经为缺乏的肿瘤找到了一种前瞻性的靶向治疗方法,在源自不同组织的肿瘤中具有疗效。这是基于谷氨酰胺代谢、DNA复制和DNA损伤反应的变化,这些都是失活的后果。

相似文献

1
PTEN Regulates Glutamine Flux to Pyrimidine Synthesis and Sensitivity to Dihydroorotate Dehydrogenase Inhibition.
Cancer Discov. 2017 Apr;7(4):380-390. doi: 10.1158/2159-8290.CD-16-0612. Epub 2017 Mar 2.
3
Pyrimidine Pathway-Dependent and -Independent Functions of the Toxoplasma gondii Mitochondrial Dihydroorotate Dehydrogenase.
Infect Immun. 2016 Sep 19;84(10):2974-81. doi: 10.1128/IAI.00187-16. Print 2016 Oct.
4
Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer.
Pharmacol Ther. 2019 Mar;195:111-131. doi: 10.1016/j.pharmthera.2018.10.012. Epub 2018 Oct 19.
5
Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells.
Sci Transl Med. 2019 Aug 7;11(504). doi: 10.1126/scitranslmed.aau4972.
6
Targeting ataxia telangiectasia-mutated- and Rad3-related kinase (ATR) in PTEN-deficient breast cancers for personalized therapy.
Breast Cancer Res Treat. 2018 Jun;169(2):277-286. doi: 10.1007/s10549-018-4683-4. Epub 2018 Feb 2.
8
Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer.
Biochim Biophys Acta Mol Basis Dis. 2020 Jun 1;1866(6):165759. doi: 10.1016/j.bbadis.2020.165759. Epub 2020 Mar 6.

引用本文的文献

1
Viral Reprogramming of Nucleotide Synthesis and Its Impact on Viral Infection.
J Med Virol. 2025 Aug;97(8):e70563. doi: 10.1002/jmv.70563.
4
Dietary phytochemical indole-3-carbinol regulates metabolic reprogramming in mouse prostate tissue.
Pharm Res. 2025 Feb;42(2):237-247. doi: 10.1007/s11095-025-03820-8. Epub 2025 Feb 4.
6
Glucose limitation protects cancer cells from apoptosis induced by pyrimidine restriction and replication inhibition.
Nat Metab. 2024 Dec;6(12):2338-2353. doi: 10.1038/s42255-024-01166-w. Epub 2024 Nov 26.
7
Mitochondrial elongation impairs breast cancer metastasis.
Sci Adv. 2024 Nov 8;10(45):eadm8212. doi: 10.1126/sciadv.adm8212. Epub 2024 Nov 6.
8
Coordinated Targeting of S6K1/2 and AXL Disrupts Pyrimidine Biosynthesis in PTEN-Deficient Glioblastoma.
Cancer Res Commun. 2024 Aug 1;4(8):2215-2227. doi: 10.1158/2767-9764.CRC-23-0631.
10
Drug repurposing for cancer therapy.
Signal Transduct Target Ther. 2024 Apr 19;9(1):92. doi: 10.1038/s41392-024-01808-1.

本文引用的文献

1
Kinase and BET Inhibitors Together Clamp Inhibition of PI3K Signaling and Overcome Resistance to Therapy.
Cancer Cell. 2015 Jun 8;27(6):837-51. doi: 10.1016/j.ccell.2015.05.006.
2
PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion.
Sci Signal. 2015 Mar 31;8(370):ra32. doi: 10.1126/scisignal.2005840.
3
ATR prohibits replication catastrophe by preventing global exhaustion of RPA.
Cell. 2013 Nov 21;155(5):1088-103. doi: 10.1016/j.cell.2013.10.043.
5
Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress.
Science. 2013 Jul 26;341(6144):395-9. doi: 10.1126/science.1236188.
6
On dihydroorotate dehydrogenases and their inhibitors and uses.
J Med Chem. 2013 Apr 25;56(8):3148-67. doi: 10.1021/jm301848w. Epub 2013 Mar 20.
7
Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1.
Science. 2013 Mar 15;339(6125):1323-8. doi: 10.1126/science.1228792. Epub 2013 Feb 21.
8
Links between metabolism and cancer.
Genes Dev. 2012 May 1;26(9):877-90. doi: 10.1101/gad.189365.112.
9
Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors.
EMBO Mol Med. 2009 Sep;1(6-7):315-22. doi: 10.1002/emmm.200900041.
10
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7. doi: 10.1073/pnas.0810199105. Epub 2008 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验