Suppr超能文献

在一项具有有序结局的I-II期试验中,用于优化双药组合的参数剂量标准化

Parametric Dose Standardization for Optimizing Two-Agent Combinations in a Phase I-II Trial with Ordinal Outcomes.

作者信息

Thall Peter F, Nguyen Hoang Q, Zinner Ralph G

机构信息

Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.

Department of Investigational Cancer Therapeutics, University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2017 Jan;66(1):201-224. doi: 10.1111/rssc.12162. Epub 2016 Jun 11.

Abstract

A Bayesian model and design are described for a phase I-II trial to jointly optimise the doses of a targeted agent and a chemotherapy agent for solid tumors. A challenge in designing the trial was that both the efficacy and toxicity outcomes were defined as four-level ordinal variables. To reflect possibly complex joint effects of the two doses on each of the two outcomes, for each marginal distribution a generalised continuation ratio model was assumed, with each agent's dose parametrically standardised in the linear term. A copula was assumed to obtain a bivariate distribution. Elicited outcome probabilities were used to construct a prior, with variances calibrated to obtain small prior effective sample size. Elicited numerical utilities of the 16 elementary outcomes were used to compute posterior mean utilities as criteria for selecting dose pairs, with adaptive randomisation to reduce the risk of getting stuck at a suboptimal pair. A simulation study showed that parametric dose standardisation with additive dose effects provides a robust, reliable model for dose pair optimisation in this setting, and it compares favourably with designs based on alternative models that include dose-dose interaction terms. The proposed model and method are applicable generally to other clinical trial settings with similar dose and outcome structures.

摘要

描述了一种用于I-II期试验的贝叶斯模型和设计,以联合优化针对实体瘤的靶向药物和化疗药物的剂量。设计该试验的一个挑战是,疗效和毒性结果均被定义为四级有序变量。为了反映两种剂量对两种结果各自可能存在的复杂联合效应,对于每个边际分布,假定采用广义连续比例模型,每种药物的剂量在线性项中进行参数标准化。假定使用一个 copula 来获得二元分布。引出的结果概率用于构建先验,通过校准方差以获得较小的先验有效样本量。使用引出的16种基本结果的数值效用计算后验平均效用,作为选择剂量对的标准,并采用自适应随机化以降低陷入次优对的风险。一项模拟研究表明,具有加性剂量效应的参数剂量标准化为该环境下的剂量对优化提供了一个稳健、可靠的模型,并且与基于包含剂量-剂量交互项的替代模型的设计相比具有优势。所提出的模型和方法通常适用于具有类似剂量和结果结构的其他临床试验环境。

相似文献

1
Parametric Dose Standardization for Optimizing Two-Agent Combinations in a Phase I-II Trial with Ordinal Outcomes.
J R Stat Soc Ser C Appl Stat. 2017 Jan;66(1):201-224. doi: 10.1111/rssc.12162. Epub 2016 Jun 11.
2
Adaptive randomization to improve utility-based dose-finding with bivariate ordinal outcomes.
J Biopharm Stat. 2012;22(4):785-801. doi: 10.1080/10543406.2012.676586.
3
Utility-based optimization of combination therapy using ordinal toxicity and efficacy in phase I/II trials.
Biometrics. 2010 Jun;66(2):532-40. doi: 10.1111/j.1541-0420.2009.01302.x. Epub 2009 Aug 10.
4
Using joint utilities of the times to response and toxicity to adaptively optimize schedule-dose regimes.
Biometrics. 2013 Sep;69(3):673-82. doi: 10.1111/biom.12065. Epub 2013 Aug 19.
5
Optimizing Sedative Dose in Preterm Infants Undergoing Treatment for Respiratory Distress Syndrome.
J Am Stat Assoc. 2014 Sep 1;109(507):931-943. doi: 10.1080/01621459.2014.904789.
6
Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
Stat Med. 2015 Feb 28;34(5):859-75. doi: 10.1002/sim.6376. Epub 2014 Nov 21.
7
A decision-theoretic phase I-II design for ordinal outcomes in two cycles.
Biostatistics. 2016 Apr;17(2):304-19. doi: 10.1093/biostatistics/kxv045. Epub 2015 Nov 9.
8
A Bayesian Adaptive Design in Cancer Phase I Trials Using Dose Combinations with Ordinal Toxicity Grades.
Stats (Basel). 2020 Sep;3(3):221-238. doi: 10.3390/stats3030017. Epub 2020 Jul 17.
9
Comparison of Phase I-II designs with parametric or semi-parametric models using two different risk-benefit trade-off criteria.
Contemp Clin Trials. 2020 Oct;97:106099. doi: 10.1016/j.cct.2020.106099. Epub 2020 Aug 19.
10
Bayesian Dose-Finding in Two Treatment Cycles Based on the Joint Utility of Efficacy and Toxicity.
J Am Stat Assoc. 2015 Jun 1;110(510):711-722. doi: 10.1080/01621459.2014.926815.

引用本文的文献

1
A Phase I-II Basket Trial Design to Optimize Dose-Schedule Regimes Based on Delayed Outcomes.
Bayesian Anal. 2021 Mar;16(1):179-202. doi: 10.1214/20-ba1205. Epub 2020 Mar 28.
2
Comparison of Phase I-II designs with parametric or semi-parametric models using two different risk-benefit trade-off criteria.
Contemp Clin Trials. 2020 Oct;97:106099. doi: 10.1016/j.cct.2020.106099. Epub 2020 Aug 19.
3
A latent variable model for improving inference in trials assessing the effect of dose on toxicity and composite efficacy endpoints.
Stat Methods Med Res. 2020 Jan;29(1):230-242. doi: 10.1177/0962280219831038. Epub 2019 Feb 25.
4
Implementation of a Model-Based Design in a Phase Ib Study of Combined Targeted Agents.
Clin Cancer Res. 2017 Dec 1;23(23):7158-7164. doi: 10.1158/1078-0432.CCR-17-1069. Epub 2017 Jul 21.
5
Implementing the EffTox dose-finding design in the Matchpoint trial.
BMC Med Res Methodol. 2017 Jul 20;17(1):112. doi: 10.1186/s12874-017-0381-x.

本文引用的文献

1
Optimizing Sedative Dose in Preterm Infants Undergoing Treatment for Respiratory Distress Syndrome.
J Am Stat Assoc. 2014 Sep 1;109(507):931-943. doi: 10.1080/01621459.2014.904789.
2
Phase I/II adaptive design for drug combination oncology trials.
Stat Med. 2014 May 30;33(12):1990-2003. doi: 10.1002/sim.6097. Epub 2014 Jan 28.
3
Using joint utilities of the times to response and toxicity to adaptively optimize schedule-dose regimes.
Biometrics. 2013 Sep;69(3):673-82. doi: 10.1111/biom.12065. Epub 2013 Aug 19.
4
Small-sample behavior of novel phase I cancer trial designs.
Clin Trials. 2013 Feb;10(1):63-80. doi: 10.1177/1740774512469311.
5
A Phase I/II trial design when response is unobserved in subjects with dose-limiting toxicity.
Stat Methods Med Res. 2016 Apr;25(2):659-73. doi: 10.1177/0962280212464541. Epub 2012 Nov 1.
6
Adaptive randomization to improve utility-based dose-finding with bivariate ordinal outcomes.
J Biopharm Stat. 2012;22(4):785-801. doi: 10.1080/10543406.2012.676586.
7
BAYESIAN PHASE I/II ADAPTIVELY RANDOMIZED ONCOLOGY TRIALS WITH COMBINED DRUGS.
Ann Appl Stat. 2011 Jan 1;5(2A):924-942. doi: 10.1214/10-AOAS433.
8
Dose-finding design for multi-drug combinations.
Clin Trials. 2011 Aug;8(4):380-9. doi: 10.1177/1740774511408748. Epub 2011 Jun 7.
9
Bayesian procedures for phase I/II clinical trials investigating the safety and efficacy of drug combinations.
Stat Med. 2011 Jul 20;30(16):1952-70. doi: 10.1002/sim.4267. Epub 2011 May 18.
10
Optimizing the concentration and bolus of a drug delivered by continuous infusion.
Biometrics. 2011 Dec;67(4):1638-46. doi: 10.1111/j.1541-0420.2011.01580.x. Epub 2011 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验