Thall Peter F, Nguyen Hoang Q
Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77230-1402, USA.
J Biopharm Stat. 2012;22(4):785-801. doi: 10.1080/10543406.2012.676586.
A sequentially outcome-adaptive Bayesian design is proposed for choosing the dose of an experimental therapy based on elicited utilities of a bivariate ordinal (toxicity, efficacy) outcome. Subject to posterior acceptability criteria to control the risk of severe toxicity and exclude unpromising doses, patients are randomized adaptively among the doses having posterior mean utilities near the maximum. The utility increment used to define near-optimality is nonincreasing with sample size. The adaptive randomization uses each dose's posterior probability of a set of good outcomes, defined by a lower utility cutoff. Saturated parametric models are assumed for the marginal dose-toxicity and dose-efficacy distributions, allowing the possible requirement of monotonicity in dose, and a copula is used to obtain a joint distribution. Prior means are computed by simulation using elicited outcome probabilities, and prior variances are calibrated to control prior effective sample size and obtain a design with good operating characteristics. The method is illustrated by a Phase I/II trial of radiation therapy for children with brainstem gliomas.
本文提出了一种基于双变量有序(毒性、疗效)结果的引出效用,用于选择实验性治疗剂量的序贯结果适应性贝叶斯设计。根据后验可接受性标准来控制严重毒性风险并排除无前景的剂量,患者在具有接近最大后验平均效用的剂量之间进行适应性随机分组。用于定义接近最优性的效用增量随样本量非递增。适应性随机化使用由较低效用截止值定义的一组良好结果的每个剂量的后验概率。假设边际剂量 - 毒性和剂量 - 疗效分布采用饱和参数模型,允许剂量可能存在单调性要求,并使用copula来获得联合分布。先验均值通过使用引出的结果概率进行模拟计算,先验方差经过校准以控制先验有效样本量,并获得具有良好操作特性的设计。通过对脑干胶质瘤儿童进行放射治疗的I/II期试验对该方法进行了说明。