Suppr超能文献

利用荧光共振能量转移研究免疫突触中的TCR-pMHC相互作用。

Förster Resonance Energy Transfer to Study TCR-pMHC Interactions in the Immunological Synapse.

作者信息

Schütz Gerhard J, Huppa Johannes B

机构信息

Institute of Applied Physics, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria.

Institute for Hygiene and Applied Immunology, Immune Recognition Unit, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090, Vienna, Austria.

出版信息

Methods Mol Biol. 2017;1584:207-229. doi: 10.1007/978-1-4939-6881-7_14.

Abstract

T-cell antigen recognition is remarkably efficient: when scanning the surface of antigen-presenting cells (APCs), T-cells can detect the presence of just a few single antigenic peptide/MHCs (pMHCs), which are often vastly outnumbered by structurally similar non-stimulatory endogenous pMHCs (Irvine et al., Nature 419(6909):845-849, 2002; Purbhoo et al., Nat Immunol 5(5):524-530, 2004; Huang et al., Immunity 39(5):846-857, 2013). How T-cells achieve this is still enigmatic, in particular in view of the rather moderate affinity that TCRs typically exert for antigenic pMHCs, at least when measured in vitro (Davis et al., Ann Rev Immunol 16:523-544, 1998). To shed light on this in a comprehensive manner, we have developed a microscopy-based assay, which allows us to quantitate TCR-pMHC interactions in situ, i.e., within the special confines of the nascent immunological synapse of a T-cell contacting a planar-supported lipid bilayer functionalized with the costimulatory molecule B7-1, the adhesion molecule ICAM-1, and pMHCs (Huppa et al., Nature 463(7283):963-967, 2010) (Fig. 1). Binding measurements are based on Förster resonance energy transfer (FRET) between site-specifically labeled pMHCs and TCRs, which are decorated with recombinant site-specifically labeled single-chain antibody fragments (scF) derived from the TCRβ-reactive H57-597 antibody (Huppa et al., Nature 463(7283):963-967, 2010). FRET, a quantum-mechanical phenomenon, involves the non-radiative coupling of dipole moments of two adjacent fluorophores, a donor molecule and an acceptor molecule. FRET efficiency is inversely proportional to the sixth power of the inter-dye distance. Hence, it can be employed as a molecular ruler (Stryer and Haugland, Proc Natl Acad Sci, USA 58(2):719-726, 1967) or, as is the case here, to score for interactions of appropriately labeled molecules. To facilitate both quantitative and single-molecule readout, it is important to conjugate donor and acceptor dyes in a site-specific manner.While SLBs mimic some but certainly not all properties of a plasma membrane of a living cell, their use features a number of operational advantages: SLBs can be prepared in a fluid state, thereby facilitating the spatial rearrangements that accompany the formation of an immunological synapse (Grakoui et al., Science 285(5425):221-227, 1999). The imaging of a three-dimensional binding process is reduced to two dimensions, which saves time and fluorophore-emitted photons and allows for fast measurements. Furthermore, images can be acquired in noise-attenuated total internal reflection (TIR) mode, so far a necessity for single-molecule detection within the immunological synapse. Importantly, the stimulatory potency of pMHCs is very well preserved compared to cell surface-embedded pMHCs. Hence, while in principle artificial, SLBs are still a good approximation of the physiologic scenario a T-cell encounters when approaching an APC. Vice versa, the reconstitutive approach offers unique opportunities to interrogate the influence of accessory molecules on T-cell antigen recognition in a highly quantitative manner.In this chapter we will provide recommendations for the production of proteins used for SLB decoration as well as hands-on protocols for the production of SLBs. We will describe in detail how to perform and analyze FRET-based experiments to determine synaptic binding constants. In the "Notes" section, we will provide some information regarding the microscope setup as well as the mathematical and biophysical foundation underlying data analysis.

摘要

T细胞抗原识别极为高效:在扫描抗原呈递细胞(APC)表面时,T细胞仅能检测到少数单个抗原肽/MHC(pMHC)的存在,而在结构上与之相似的非刺激性内源性pMHC通常数量众多(欧文等人,《自然》419(6909):845 - 849,2002;普尔布霍等人,《自然免疫学》5(5):524 - 530,2004;黄等人,《免疫》39(5):846 - 857,2013)。T细胞如何实现这一点仍然是个谜,尤其是考虑到TCR通常对抗原性pMHC的亲和力相当适中,至少在体外测量时是这样(戴维斯等人《免疫学年评》16:523 - 544,1998)。为了全面阐明这一问题,我们开发了一种基于显微镜的检测方法,它使我们能够在原位定量TCR - pMHC相互作用,即在T细胞与用共刺激分子B7 - 1、黏附分子ICAM - 1和pMHC功能化的平面支撑脂质双层接触形成的新生免疫突触的特殊范围内进行定量(胡帕等人,《自然》463(7283):963 - 967,2010)(图1)。结合测量基于位点特异性标记的pMHC与TCR之间的荧光共振能量转移(FRET),TCR用源自TCRβ反应性H57 - 597抗体的重组位点特异性标记单链抗体片段(scF)进行修饰(胡帕等人,《自然》463(7283):963 - 967,2010)。FRET是一种量子力学现象,涉及两个相邻荧光团(供体分子和受体分子)偶极矩的非辐射耦合。FRET效率与染料间距离的六次方成反比。因此,它可作为分子尺子(斯特里尔和豪格兰德,《美国国家科学院院刊》58(2):719 - 726,1967),或者像这里一样,用于对适当标记分子的相互作用进行评分。为便于进行定量和单分子读出,以位点特异性方式缀合供体和受体染料很重要。虽然平面支撑脂质双层模拟了活细胞质膜的一些但肯定不是所有特性,但其使用具有许多操作优势:平面支撑脂质双层可以制成流体状态,从而便于免疫突触形成时伴随的空间重排(格拉库伊等人,《科学》285(5425):221 - 227,1999)。三维结合过程的成像简化为二维,这节省了时间和荧光团发射的光子,并允许进行快速测量。此外,图像可以在噪声衰减全内反射(TIR)模式下采集,这是目前在免疫突触内进行单分子检测的必要条件。重要的是,与细胞表面嵌入的pMHC相比,pMHCs的刺激效力得到了很好的保留。因此,虽然原则上是人工的,但平面支撑脂质双层仍然很好地近似了T细胞接近APC时遇到的生理场景。反之,这种重组方法为以高度定量的方式探究辅助分子对T细胞抗原识别的影响提供了独特机会。在本章中,我们将提供用于平面支撑脂质双层修饰的蛋白质生产的建议以及平面支撑脂质双层生产的实际操作方案。我们将详细描述如何进行和分析基于FRET的实验以确定突触结合常数。在 “注释” 部分,我们将提供一些关于显微镜设置以及数据分析背后的数学和生物物理基础的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验