Cai Haogang, Depoil David, Muller James, Sheetz Michael P, Dustin Michael L, Wind Shalom J
Department of Mechanical Engineering, Columbia University, New York, USA.
Kennedy Institute of Rheumatology, NDORMS, The University of Oxford, Oxford, UK.
Methods Mol Biol. 2017;1584:307-331. doi: 10.1007/978-1-4939-6881-7_18.
In this chapter, we present techniques, based on molecular-scale nanofabrication and selective self-assembly, for the presentation of biomolecules of interest (ligands, receptors, etc.) on a surface with precise spatial control and arbitrary geometry at the single-molecule level. Metallic nanodot arrays are created on glass coverslips and are then used as anchors for the immobilization of biological ligands via thiol linking chemistry. The nanodot size is controlled by both lithography and metallization. The reagent concentration in self-assembly can be adjusted to ensure single-molecule occupancy for a given dot size. The surrounding glass is backfilled by a protein-repellent layer to prevent nonspecific adsorption. Moreover, bifunctional surfaces are created, whereby a second ligand is presented on the background, which is frequently a requirement for simulating complex cellular functions involving more than one key ligand. This platform serves as a novel and powerful tool for molecular and cellular biology, e.g., to study the fundamental mechanisms of receptor-mediated signaling.
在本章中,我们介绍了基于分子尺度纳米制造和选择性自组装的技术,用于在单分子水平上以精确的空间控制和任意几何形状在表面呈现感兴趣的生物分子(配体、受体等)。在玻璃盖玻片上创建金属纳米点阵列,然后通过硫醇连接化学将其用作固定生物配体的锚点。纳米点的尺寸通过光刻和金属化来控制。自组装中的试剂浓度可以调整,以确保对于给定的点尺寸实现单分子占据。周围的玻璃用蛋白质排斥层回填,以防止非特异性吸附。此外,还创建了双功能表面,从而在背景上呈现第二种配体,这通常是模拟涉及多个关键配体的复杂细胞功能所必需的。该平台是分子和细胞生物学的一种新颖而强大的工具,例如用于研究受体介导信号传导的基本机制。