Suppr超能文献

聚合酶 γ 协调 DNA 合成和校对以确保线粒体基因组的完整性。

Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity.

机构信息

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.

Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.

出版信息

Nat Struct Mol Biol. 2023 Jun;30(6):812-823. doi: 10.1038/s41594-023-00980-2. Epub 2023 May 18.

Abstract

Accurate replication of mitochondrial DNA (mtDNA) by DNA polymerase γ (Polγ) is essential for maintaining cellular energy supplies, metabolism, and cell cycle control. To illustrate the structural mechanism for Polγ coordinating polymerase (pol) and exonuclease (exo) activities to ensure rapid and accurate DNA synthesis, we determined four cryo-EM structures of Polγ captured after accurate or erroneous incorporation to a resolution of 2.4-3.0 Å. The structures show that Polγ employs a dual-checkpoint mechanism to sense nucleotide misincorporation and initiate proofreading. The transition from replication to error editing is accompanied by increased dynamics in both DNA and enzyme, in which the polymerase relaxes its processivity and the primer-template DNA unwinds, rotates, and backtracks to shuttle the mismatch-containing primer terminus 32 Å to the exo site for editing. Our structural and functional studies also provide a foundation for analyses of Polγ mutation-induced human diseases and aging.

摘要

准确复制线粒体 DNA(mtDNA)是 DNA 聚合酶 γ(Polγ)维持细胞能量供应、代谢和细胞周期控制的关键。为了阐明 Polγ 协调聚合酶(pol)和核酸外切酶(exonuclease,exo)活性以确保快速准确的 DNA 合成的结构机制,我们解析了分辨率为 2.4-3.0Å 的 Polγ 准确或错误掺入后捕获的四个冷冻电镜结构。这些结构表明,Polγ 采用双重检查点机制来感知核苷酸错配并启动校对。从复制到错误编辑的转变伴随着 DNA 和酶的动力学增加,其中聚合酶降低其持续合成能力,引物-模板 DNA 解旋、旋转并回溯,将含有错配的引物末端 32Å 运送到外切酶位点进行编辑。我们的结构和功能研究也为分析 Polγ 突变引起的人类疾病和衰老提供了基础。

相似文献

1
Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity.
Nat Struct Mol Biol. 2023 Jun;30(6):812-823. doi: 10.1038/s41594-023-00980-2. Epub 2023 May 18.
3
Coordinated DNA polymerization by Polγ and the region of LonP1 regulated proteolysis.
Nucleic Acids Res. 2024 Jul 22;52(13):7863-7875. doi: 10.1093/nar/gkae539.
4
The disease-causing mutation p.F907I reveals a novel pathogenic mechanism for POLγ-related diseases.
Biochim Biophys Acta Mol Basis Dis. 2023 Oct;1869(7):166786. doi: 10.1016/j.bbadis.2023.166786. Epub 2023 Jun 10.
5
Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity.
Nucleic Acids Res. 2020 Jan 24;48(2):817-829. doi: 10.1093/nar/gkz1018.
9
Antimutator alleles of yeast DNA polymerase gamma modulate the balance between DNA synthesis and excision.
PLoS One. 2011;6(11):e27847. doi: 10.1371/journal.pone.0027847. Epub 2011 Nov 16.

引用本文的文献

1
The proofreading mechanism of the human leading-strand DNA polymerase ε holoenzyme.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2507232122. doi: 10.1073/pnas.2507232122. Epub 2025 May 29.
2
3
The POLγ Y951N patient mutation disrupts the switch between DNA synthesis and proofreading, triggering mitochondrial DNA instability.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2417477122. doi: 10.1073/pnas.2417477122. Epub 2025 Apr 16.
4
Small molecules restore mutant mitochondrial DNA polymerase activity.
Nature. 2025 Apr 9. doi: 10.1038/s41586-025-08856-9.
5
Cryo-EM Structures of the Plasmodium falciparum Apicoplast DNA Polymerase.
J Mol Biol. 2024 Dec 1;436(23):168842. doi: 10.1016/j.jmb.2024.168842. Epub 2024 Oct 26.
6
Structural basis for processive daughter-strand synthesis and proofreading by the human leading-strand DNA polymerase Pol ε.
Nat Struct Mol Biol. 2024 Dec;31(12):1921-1931. doi: 10.1038/s41594-024-01370-y. Epub 2024 Aug 7.
7
Structures of the mitochondrial single-stranded DNA binding protein with DNA and DNA polymerase γ.
Nucleic Acids Res. 2024 Sep 23;52(17):10329-10340. doi: 10.1093/nar/gkae670.
8
Coordinated DNA polymerization by Polγ and the region of LonP1 regulated proteolysis.
Nucleic Acids Res. 2024 Jul 22;52(13):7863-7875. doi: 10.1093/nar/gkae539.
10
Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases.
Nat Commun. 2023 Dec 14;14(1):8306. doi: 10.1038/s41467-023-44125-x.

本文引用的文献

1
Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase.
J Biol Chem. 2022 Mar;298(3):101627. doi: 10.1016/j.jbc.2022.101627. Epub 2022 Jan 22.
2
DeepEMhancer: a deep learning solution for cryo-EM volume post-processing.
Commun Biol. 2021 Jul 15;4(1):874. doi: 10.1038/s42003-021-02399-1.
3
Local computational methods to improve the interpretability and analysis of cryo-EM maps.
Nat Commun. 2021 Feb 23;12(1):1240. doi: 10.1038/s41467-021-21509-5.
4
Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction.
Nat Methods. 2020 Dec;17(12):1214-1221. doi: 10.1038/s41592-020-00990-8. Epub 2020 Nov 30.
5
Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path.
Nat Commun. 2020 Oct 23;11(1):5379. doi: 10.1038/s41467-020-19165-2.
6
UCSF ChimeraX: Structure visualization for researchers, educators, and developers.
Protein Sci. 2021 Jan;30(1):70-82. doi: 10.1002/pro.3943. Epub 2020 Oct 22.
7
Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in -3.1.
IUCrJ. 2020 Feb 11;7(Pt 2):253-267. doi: 10.1107/S2052252520000081. eCollection 2020 Mar 1.
8
Measurement of atom resolvability in cryo-EM maps with Q-scores.
Nat Methods. 2020 Mar;17(3):328-334. doi: 10.1038/s41592-020-0731-1. Epub 2020 Feb 10.
9
Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data.
Protein Sci. 2020 Apr;29(4):1069-1078. doi: 10.1002/pro.3791. Epub 2020 Mar 2.
10
DNAproDB: an expanded database and web-based tool for structural analysis of DNA-protein complexes.
Nucleic Acids Res. 2020 Jan 8;48(D1):D277-D287. doi: 10.1093/nar/gkz889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验