Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
Nat Struct Mol Biol. 2023 Jun;30(6):812-823. doi: 10.1038/s41594-023-00980-2. Epub 2023 May 18.
Accurate replication of mitochondrial DNA (mtDNA) by DNA polymerase γ (Polγ) is essential for maintaining cellular energy supplies, metabolism, and cell cycle control. To illustrate the structural mechanism for Polγ coordinating polymerase (pol) and exonuclease (exo) activities to ensure rapid and accurate DNA synthesis, we determined four cryo-EM structures of Polγ captured after accurate or erroneous incorporation to a resolution of 2.4-3.0 Å. The structures show that Polγ employs a dual-checkpoint mechanism to sense nucleotide misincorporation and initiate proofreading. The transition from replication to error editing is accompanied by increased dynamics in both DNA and enzyme, in which the polymerase relaxes its processivity and the primer-template DNA unwinds, rotates, and backtracks to shuttle the mismatch-containing primer terminus 32 Å to the exo site for editing. Our structural and functional studies also provide a foundation for analyses of Polγ mutation-induced human diseases and aging.
准确复制线粒体 DNA(mtDNA)是 DNA 聚合酶 γ(Polγ)维持细胞能量供应、代谢和细胞周期控制的关键。为了阐明 Polγ 协调聚合酶(pol)和核酸外切酶(exonuclease,exo)活性以确保快速准确的 DNA 合成的结构机制,我们解析了分辨率为 2.4-3.0Å 的 Polγ 准确或错误掺入后捕获的四个冷冻电镜结构。这些结构表明,Polγ 采用双重检查点机制来感知核苷酸错配并启动校对。从复制到错误编辑的转变伴随着 DNA 和酶的动力学增加,其中聚合酶降低其持续合成能力,引物-模板 DNA 解旋、旋转并回溯,将含有错配的引物末端 32Å 运送到外切酶位点进行编辑。我们的结构和功能研究也为分析 Polγ 突变引起的人类疾病和衰老提供了基础。