Suppr超能文献

使用核酸可编程蛋白质阵列发现蛋白质-蛋白质相互作用。

Discovering Protein-Protein Interactions Using Nucleic Acid Programmable Protein Arrays.

作者信息

Tang Yanyang, Qiu Ji, Machner Matthias, LaBaer Joshua

机构信息

Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona.

Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.

出版信息

Curr Protoc Cell Biol. 2017 Mar 3;74:15.21.1-15.21.14. doi: 10.1002/cpcb.14.

Abstract

We have developed a protocol enabling the study of protein-protein interactions (PPIs) at the proteome level using in vitro-synthesized proteins. Assay preparation requires molecular cloning of the query gene into a vector that supports in vitro transcription/translation (IVTT) and appends a HaloTag to the query protein of interest. In parallel, protein microarrays are prepared by printing plasmids encoding glutathione S-transferase (GST)-tagged target proteins onto a carrier matrix/glass slide coated with antibody directed against GST. At the time of the experiment, the query protein and the target protein are produced separately through IVTT. The query protein is then applied to nucleic acid programmable protein arrays (NAPPA) that display thousands of freshly produced target proteins captured by anti-GST antibody. Interactions between the query and immobilized target proteins are detected through addition of a fluorophore-labeled HaloTag ligand. Our protocol allows the elucidation of PPIs in a high-throughput fashion using proteins produced in vitro, obviating the scientific challenges, high cost, and laborious work, as well as concerns about protein stability, which are usually present in protocols using conventional protein arrays. © 2017 by John Wiley & Sons, Inc.

摘要

我们已经开发出一种实验方案,能够利用体外合成的蛋白质在蛋白质组水平研究蛋白质-蛋白质相互作用(PPI)。实验准备工作需要将目标基因分子克隆到一个支持体外转录/翻译(IVTT)的载体中,并在感兴趣的目标蛋白质上附加一个卤代标签。同时,通过将编码谷胱甘肽S-转移酶(GST)标签的靶蛋白的质粒打印到涂有抗GST抗体的载体基质/载玻片上来制备蛋白质微阵列。在实验时,目标蛋白和靶蛋白通过IVTT分别产生。然后将目标蛋白应用于核酸可编程蛋白质阵列(NAPPA),该阵列展示了数千种由抗GST抗体捕获的新产生的靶蛋白。通过添加荧光团标记的卤代标签配体来检测目标蛋白与固定化靶蛋白之间的相互作用。我们的实验方案允许使用体外产生的蛋白质以高通量方式阐明PPI,避免了通常存在于使用传统蛋白质阵列的实验方案中的科学挑战、高成本和繁琐工作,以及对蛋白质稳定性的担忧。© 2017约翰威立国际出版公司。

相似文献

1
Discovering Protein-Protein Interactions Using Nucleic Acid Programmable Protein Arrays.
Curr Protoc Cell Biol. 2017 Mar 3;74:15.21.1-15.21.14. doi: 10.1002/cpcb.14.
2
Profiling Interactome Networks with the HaloTag-NAPPA In Situ Protein Array.
Curr Protoc Plant Biol. 2018 Sep;3(3):e20071. doi: 10.1002/cppb.20071. Epub 2018 Aug 14.
3
A decade of Nucleic Acid Programmable Protein Arrays (NAPPA) availability: News, actors, progress, prospects and access.
J Proteomics. 2019 Apr 30;198:27-35. doi: 10.1016/j.jprot.2018.12.007. Epub 2018 Dec 12.
4
Mapping transcription factor interactome networks using HaloTag protein arrays.
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):E4238-47. doi: 10.1073/pnas.1603229113. Epub 2016 Jun 29.
5
Nucleic Acid programmable protein arrays: versatile tools for array-based functional protein studies.
Curr Protoc Protein Sci. 2011 Apr;Chapter 27:Unit27.2. doi: 10.1002/0471140864.ps2702s64.
9
On-chip protein synthesis for making microarrays.
Methods Mol Biol. 2006;328:1-14. doi: 10.1385/1-59745-026-X:1.
10
Identification of Antibody Biomarker Using High-Density Nucleic Acid Programmable Protein Array.
Methods Mol Biol. 2021;2344:47-64. doi: 10.1007/978-1-0716-1562-1_4.

引用本文的文献

1
Tagging Recombinant Proteins to Enhance Solubility and Aid Purification.
Methods Mol Biol. 2023;2699:97-123. doi: 10.1007/978-1-0716-3362-5_7.
2
Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology.
Adv Biochem Eng Biotechnol. 2023;185:21-46. doi: 10.1007/10_2023_226.
3
Maximizing binary interactome mapping with a minimal number of assays.
Nat Commun. 2019 Aug 29;10(1):3907. doi: 10.1038/s41467-019-11809-2.
4
Experimental Analysis of Viral-Host Interactions.
Front Physiol. 2019 Apr 11;10:425. doi: 10.3389/fphys.2019.00425. eCollection 2019.

本文引用的文献

1
A Contra Capture Protein Array Platform for Studying Post-translationally Modified (PTM) Auto-antigenomes.
Mol Cell Proteomics. 2016 Jul;15(7):2324-37. doi: 10.1074/mcp.M115.057661. Epub 2016 May 2.
2
High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays.
Nat Protoc. 2015 May;10(5):756-67. doi: 10.1038/nprot.2015.044. Epub 2015 Apr 16.
3
Host-pathogen interaction profiling using self-assembling human protein arrays.
J Proteome Res. 2015 Apr 3;14(4):1920-36. doi: 10.1021/pr5013015. Epub 2015 Mar 18.
4
Development of a full-length human protein production pipeline.
Protein Sci. 2014 Aug;23(8):1123-35. doi: 10.1002/pro.2484. Epub 2014 Jun 2.
5
DNASU plasmid and PSI:Biology-Materials repositories: resources to accelerate biological research.
Nucleic Acids Res. 2014 Jan;42(Database issue):D1253-60. doi: 10.1093/nar/gkt1060. Epub 2013 Nov 12.
7
Large-scale mapping of human protein interactome using structural complexes.
EMBO Rep. 2012 Mar 1;13(3):266-71. doi: 10.1038/embor.2011.261.
8
Virus-human cell interactomes.
Methods Mol Biol. 2012;812:103-20. doi: 10.1007/978-1-61779-455-1_6.
9
Global landscape of HIV-human protein complexes.
Nature. 2011 Dec 21;481(7381):365-70. doi: 10.1038/nature10719.
10
A secreted protein microarray platform for extracellular protein interaction discovery.
Anal Biochem. 2012 Jan 15;420(2):127-38. doi: 10.1016/j.ab.2011.09.017. Epub 2011 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验