Suppr超能文献

使用自组装人类蛋白质阵列进行宿主-病原体相互作用分析。

Host-pathogen interaction profiling using self-assembling human protein arrays.

作者信息

Yu Xiaobo, Decker Kimberly B, Barker Kristi, Neunuebel M Ramona, Saul Justin, Graves Morgan, Westcott Nathan, Hang Howard, LaBaer Joshua, Qiu Ji, Machner Matthias P

机构信息

†Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States.

‡Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States.

出版信息

J Proteome Res. 2015 Apr 3;14(4):1920-36. doi: 10.1021/pr5013015. Epub 2015 Mar 18.

Abstract

Host-pathogen protein interactions are fundamental to every microbial infection, yet their identification has remained challenging due to the lack of simple detection tools that avoid abundance biases while providing an open format for experimental modifications. Here, we applied the Nucleic Acid-Programmable Protein Array and a HaloTag-Halo ligand detection system to determine the interaction network of Legionella pneumophila effectors (SidM and LidA) with 10 000 unique human proteins. We identified known targets of these L. pneumophila proteins and potentially novel interaction candidates. In addition, we applied our Click chemistry-based NAPPA platform to identify the substrates for SidM, an effector with an adenylyl transferase domain that catalyzes AMPylation (adenylylation), the covalent addition of adenosine monophosphate (AMP). We confirmed a subset of the novel SidM and LidA targets in independent in vitro pull-down and in vivo cell-based assays, and provided further insight into how these effectors may discriminate between different host Rab GTPases. Our method circumvents the purification of thousands of human and pathogen proteins, and does not require antibodies against or prelabeling of query proteins. This system is amenable to high-throughput analysis of effectors from a wide variety of human pathogens that may bind to and/or post-translationally modify targets within the human proteome.

摘要

宿主-病原体蛋白相互作用是每种微生物感染的基础,但由于缺乏能避免丰度偏差且为实验修饰提供开放格式的简单检测工具,其鉴定一直具有挑战性。在此,我们应用核酸可编程蛋白阵列和卤代标签-卤代配体检测系统来确定嗜肺军团菌效应蛋白(SidM和LidA)与10000种独特人类蛋白的相互作用网络。我们鉴定出了这些嗜肺军团菌蛋白的已知靶点以及潜在的新型相互作用候选物。此外,我们应用基于点击化学的NAPPA平台来鉴定SidM的底物,SidM是一种具有腺苷酸转移酶结构域的效应蛋白,可催化AMP化(腺苷酸化),即单磷酸腺苷(AMP)的共价添加。我们在独立的体外下拉实验和体内细胞实验中证实了一部分新型SidM和LidA靶点,并进一步深入了解了这些效应蛋白如何区分不同的宿主Rab GTPases。我们的方法规避了数千种人类和病原体蛋白的纯化,并且不需要针对查询蛋白的抗体或预标记。该系统适用于对来自多种人类病原体的效应蛋白进行高通量分析,这些效应蛋白可能与人类蛋白质组中的靶点结合和/或进行翻译后修饰。

相似文献

1
Host-pathogen interaction profiling using self-assembling human protein arrays.
J Proteome Res. 2015 Apr 3;14(4):1920-36. doi: 10.1021/pr5013015. Epub 2015 Mar 18.
2
AMPylation is critical for Rab1 localization to vacuoles containing Legionella pneumophila.
mBio. 2014 Feb 11;5(1):e01035-13. doi: 10.1128/mBio.01035-13.
3
Legionella effector AnkX interacts with host nuclear protein PLEKHN1.
BMC Microbiol. 2018 Jan 5;18(1):5. doi: 10.1186/s12866-017-1147-7.
4
De-AMPylation unmasked: modulation of host membrane trafficking.
Sci Signal. 2011 Oct 11;4(194):pe42. doi: 10.1126/scisignal.2002458.
6
The Rab-binding Profiles of Bacterial Virulence Factors during Infection.
J Biol Chem. 2016 Mar 11;291(11):5832-5843. doi: 10.1074/jbc.M115.700930. Epub 2016 Jan 11.
8
The taming of a Rab GTPase by Legionella pneumophila.
Small GTPases. 2012 Jan-Mar;3(1):28-33. doi: 10.4161/sgtp.18704.
9
Legionella pneumophila LidA affects nucleotide binding and activity of the host GTPase Rab1.
J Bacteriol. 2012 Mar;194(6):1389-400. doi: 10.1128/JB.06306-11. Epub 2012 Jan 6.

引用本文的文献

1
Dual-species proteomics and targeted intervention of animal-pathogen interactions.
J Adv Res. 2024 Sep 2. doi: 10.1016/j.jare.2024.08.038.
2
Monitoring host-pathogen interactions using chemical proteomics.
RSC Chem Biol. 2023 Nov 10;5(2):73-89. doi: 10.1039/d3cb00135k. eCollection 2024 Feb 7.
3
From prediction to function: Current practices and challenges towards the functional characterization of type III effectors.
Front Microbiol. 2023 Feb 8;14:1113442. doi: 10.3389/fmicb.2023.1113442. eCollection 2023.
4
The role of pathogens in diabetes pathogenesis and the potential of immunoproteomics as a diagnostic and prognostic tool.
Front Microbiol. 2022 Nov 14;13:1042362. doi: 10.3389/fmicb.2022.1042362. eCollection 2022.
5
Host-microbiome protein-protein interactions capture disease-relevant pathways.
Genome Biol. 2022 Mar 4;23(1):72. doi: 10.1186/s13059-022-02643-9.
6
Developments and Applications of Functional Protein Microarrays.
Mol Cell Proteomics. 2020 Jun;19(6):916-927. doi: 10.1074/mcp.R120.001936. Epub 2020 Apr 17.
8
Experimental Analysis of Viral-Host Interactions.
Front Physiol. 2019 Apr 11;10:425. doi: 10.3389/fphys.2019.00425. eCollection 2019.
9
Insights from the sequence similarity of Zika virus proteins with the Human nerve proteins.
Bioinformation. 2018 May 31;14(5):194-200. doi: 10.6026/97320630014194. eCollection 2018.

本文引用的文献

1
AMPylation of Rho GTPases subverts multiple host signaling processes.
J Biol Chem. 2014 Nov 21;289(47):32977-88. doi: 10.1074/jbc.M114.601310. Epub 2014 Oct 9.
3
Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions.
Theranostics. 2014 Jun 6;4(8):808-22. doi: 10.7150/thno.8255. eCollection 2014.
4
Development of a full-length human protein production pipeline.
Protein Sci. 2014 Aug;23(8):1123-35. doi: 10.1002/pro.2484. Epub 2014 Jun 2.
5
VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion.
Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4560-5. doi: 10.1073/pnas.1316376111. Epub 2014 Mar 10.
6
What pathogens have taught us about posttranslational modifications.
Cell Host Microbe. 2013 Sep 11;14(3):269-79. doi: 10.1016/j.chom.2013.07.008.
7
A Rab-centric perspective of bacterial pathogen-occupied vacuoles.
Cell Host Microbe. 2013 Sep 11;14(3):256-68. doi: 10.1016/j.chom.2013.08.010.
8
SET-domain bacterial effectors target heterochromatin protein 1 to activate host rDNA transcription.
EMBO Rep. 2013 Aug;14(8):733-40. doi: 10.1038/embor.2013.86. Epub 2013 Jun 25.
9
Quantifying antibody binding on protein microarrays using microarray nonlinear calibration.
Biotechniques. 2013 May;54(5):257-64. doi: 10.2144/000114028.
10
Targeting of the small GTPase Rab6A' by the Legionella pneumophila effector LidA.
Infect Immun. 2013 Jun;81(6):2226-35. doi: 10.1128/IAI.00157-13. Epub 2013 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验