Suppr超能文献

混合方法研究自行车暴露与事故率的关系。

A mixed methods investigation of bicycle exposure in crash rates.

机构信息

Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, United States.

出版信息

Accid Anal Prev. 2019 Sep;130:54-61. doi: 10.1016/j.aap.2017.02.004. Epub 2017 Mar 1.

Abstract

Crash rates are an essential tool enabling researchers and practitioners to assess whether a location is truly more dangerous, or simply serves a higher volume of vehicles. Unfortunately, this simple crash rate is far more difficult to calculate for bicycles due to data challenges and the fact that they are uniquely exposed to both bicycle and automobile volumes on shared roadways. Bicycle count data, though increasingly more available, still represents a fraction of the available count data for automobiles. Further compounding on this, bicycle demand estimation methods often require more data than automobiles to account for the high variability that bicycle demand is subject to. This paper uses a combination of mixed methods to overcome these challenges and to perform an investigation of crash rates and exposure to different traffic volumes.

摘要

碰撞率是一种重要的工具,使研究人员和从业者能够评估一个地点是否真的更危险,或者只是服务于更高的车辆量。不幸的是,由于数据挑战以及自行车在共享道路上同时受到自行车和汽车数量的独特影响,这个简单的碰撞率对于自行车来说要困难得多计算。自行车计数数据虽然越来越多,但仍只占汽车可用计数数据的一小部分。更糟糕的是,自行车需求估计方法通常比汽车需要更多的数据来解释自行车需求所受到的高度可变性。本文使用混合方法的组合来克服这些挑战,并对不同交通量的碰撞率和暴露情况进行调查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验