USDA UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO 80523, USA; Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, PO Box 149, 54124 Thessaloniki, Greece.
Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, PO Box 149, 54124 Thessaloniki, Greece.
Sci Total Environ. 2017 Jul 15;590-591:92-106. doi: 10.1016/j.scitotenv.2017.02.174. Epub 2017 Mar 1.
This study aims to construct and validate a neural network (NN) model for the production of high frequency (1min) ground-based estimates of total ozone column (TOC) at a mid-latitude UV and ozone monitoring station in the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki (LAP/AUTh) for the years 2005-2014. In the first stage of model development, ~30,000 records of coincident solar UV spectral irradiance measurements from a Norsk Institutt for Luftforskning (NILU)-UV multi-filter radiometer and TOC measurements from a co-located Brewer spectroradiometer are used to train a NN to learn the nonlinear functional relation between the irradiances and TOC. The model is then subjected to sensitivity analysis and validation. Close agreement is obtained (R=0.94, RMSE=8.21 DU and bias=-0.15 DU relative to the Brewer) for the training data in the correlation of NN estimates on Brewer derived TOC with 95% of the coincident data differing by less than 13 DU. In the second stage of development, a long time series (≥1 million records) of high frequency (1min) NILU-UV ground-based measurements are presented as inputs to the NN model to generate high frequency TOC estimates. The advantage of the NN model is that it is not site dependent and is applicable to any NILU input data lying within the range of the training data. GOME/ERS-2, SCIAMACHY/Envisat, OMI/Aura and GOME2/MetOp-A TOC records are then used to perform a precise cross-validation analysis and comparison with the NILU TOC estimates over Thessaloniki. All 4 satellite TOC dataset are retrieved using the GOME Direct Fitting algorithm, version 3 (GODFIT_v3), for reasons of consistency. The NILU TOC estimates within ±30min of the overpass times agree well with the satellite TOC retrievals with coefficient of determination in the range 0.88≤R≤0.90 for all sky conditions and 0.95≤R≤0.96 for clear sky conditions. The mean fractional differences are found to be -0.67%±2.15%, -1.44%±2.25%, -2.09%±2.06% and -0.85%±2.19% for GOME, SCIAMACHY, OMI and GOME2 respectively for the clear sky cases. The near constant standard deviation (~±2.2%) across the array of sensors testifies directly to the stability of both the GODFIT_v3 algorithm and the NN model for providing coherent and robust TOC records. Furthermore, the high Pearson product moment correlation coefficients (0.94<R<0.98) testify to the strength of the linear relationship between the satellite algorithm retrievals of TOC and ground-based estimates, while biases of less than 5 DU suggest that systematic errors are low. This novel methodology contributes to the ongoing assessment of the quality and consistency of ground and space-based measurements of total ozone columns.
本研究旨在构建和验证一个神经网络(NN)模型,以在希腊塞萨洛尼基亚里士多德大学大气物理实验室(LAP/AUTh)的中纬度 UV 和臭氧监测站,生成高频(1 分钟)地面总臭氧柱(TOC)的估计值。在模型开发的第一阶段,使用约 30000 个挪威空气研究所(NILU)-UV 多滤光光度计的太阳紫外光谱辐照度测量记录和同一位置的 Brewer 分光辐射计的 TOC 测量记录来训练 NN,以学习辐照度和 TOC 之间的非线性函数关系。然后对模型进行敏感性分析和验证。NN 估计值与 Brewer 衍生的 TOC 的相关性的训练数据的吻合度非常高(R=0.94,RMSE=8.21 DU,Bias=-0.15 DU 相对于 Brewer),95%的吻合数据差异小于 13 DU。在第二阶段的开发中,提出了一个高频(1 分钟)NILU-UV 地面测量的长时间序列(≥100 万条记录)作为 NN 模型的输入,以生成高频 TOC 估计值。NN 模型的优点是它不依赖于站点,并且适用于训练数据范围内的任何 NILU 输入数据。然后使用 GOME/ERS-2、SCIAMACHY/Envisat、OMI/Aura 和 GOME2/MetOp-A TOC 记录进行精确的交叉验证分析,并与塞萨洛尼基的 NILU TOC 估计值进行比较。出于一致性的原因,所有 4 个卫星 TOC 数据集均使用 GOME 直接拟合算法版本 3(GODFIT_v3)进行检索。在过境时间的±30 分钟内,NILU TOC 估计值与卫星 TOC 检索值吻合良好,所有天气条件下的决定系数在 0.88≤R≤0.90 之间,晴朗天气条件下的决定系数在 0.95≤R≤0.96 之间。对于晴朗天气情况,分别发现 GOME、SCIAMACHY、OMI 和 GOME2 的平均分数差异为-0.67%±2.15%、-1.44%±2.25%、-2.09%±2.06%和-0.85%±2.19%。传感器阵列的接近恒定的标准偏差(~±2.2%)直接证明了 GODFIT_v3 算法和 NN 模型在提供一致和稳健的 TOC 记录方面的稳定性。此外,高 Pearson 乘积矩相关系数(0.94<R<0.98)证明了卫星算法检索的 TOC 与地面估计值之间的线性关系的强度,而偏差小于 5 DU 表明系统误差较低。这种新方法有助于对地面和空间总臭氧柱测量的质量和一致性进行持续评估。