Suppr超能文献

制剂对化学品毒性影响的预测。

Prediction of the effect of formulation on the toxicity of chemicals.

作者信息

Mistry Pritesh, Neagu Daniel, Sanchez-Ruiz Antonio, Trundle Paul R, Vessey Jonathan D, Gosling John Paul

机构信息

Artificial Intelligence Research Group , Faculty of Engineering and Informatics , University of Bradford , Bradford , UK.

Lhasa Limited , Granary Wharf House , 2 Canal Wharf , Holbeck , Leeds , LS11 9PS , UK . Email:

出版信息

Toxicol Res (Camb). 2017 Jan 1;6(1):42-53. doi: 10.1039/c6tx00303f. Epub 2016 Oct 31.

Abstract

Two approaches for the prediction of which of two vehicles will result in lower toxicity for anticancer agents are presented. Machine-learning models are developed using decision tree, random forest and partial least squares methodologies and statistical evidence is presented to demonstrate that they represent valid models. Separately, a clustering method is presented that allows the ordering of vehicles by the toxicity they show for chemically-related compounds.

摘要

本文介绍了两种预测两种载体中哪一种对抗癌药物毒性更低的方法。使用决策树、随机森林和偏最小二乘法开发了机器学习模型,并提供了统计证据以证明它们是有效的模型。另外,还提出了一种聚类方法,该方法可以根据载体对化学相关化合物的毒性对其进行排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cdc/6062394/8a7289e4c308/c6tx00303f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验