Suppr超能文献

机器学习与衰老:以老年人严重跌倒伤害预测模型的开发为例。

Machine Learning in Aging: An Example of Developing Prediction Models for Serious Fall Injury in Older Adults.

机构信息

Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina.

Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.

出版信息

J Gerontol A Biol Sci Med Sci. 2021 Mar 31;76(4):647-654. doi: 10.1093/gerona/glaa138.

Abstract

BACKGROUND

Advances in computational algorithms and the availability of large datasets with clinically relevant characteristics provide an opportunity to develop machine learning prediction models to aid in diagnosis, prognosis, and treatment of older adults. Some studies have employed machine learning methods for prediction modeling, but skepticism of these methods remains due to lack of reproducibility and difficulty in understanding the complex algorithms that underlie models. We aim to provide an overview of two common machine learning methods: decision tree and random forest. We focus on these methods because they provide a high degree of interpretability.

METHOD

We discuss the underlying algorithms of decision tree and random forest methods and present a tutorial for developing prediction models for serious fall injury using data from the Lifestyle Interventions and Independence for Elders (LIFE) study.

RESULTS

Decision tree is a machine learning method that produces a model resembling a flow chart. Random forest consists of a collection of many decision trees whose results are aggregated. In the tutorial example, we discuss evaluation metrics and interpretation for these models. Illustrated using data from the LIFE study, prediction models for serious fall injury were moderate at best (area under the receiver operating curve of 0.54 for decision tree and 0.66 for random forest).

CONCLUSIONS

Machine learning methods offer an alternative to traditional approaches for modeling outcomes in aging, but their use should be justified and output should be carefully described. Models should be assessed by clinical experts to ensure compatibility with clinical practice.

摘要

背景

计算算法的进步和具有临床相关特征的大型数据集的可用性为开发机器学习预测模型提供了机会,以帮助诊断、预后和治疗老年人。一些研究已经使用机器学习方法进行预测建模,但由于缺乏可重复性和难以理解模型背后复杂的算法,这些方法仍然存在怀疑。我们旨在概述两种常见的机器学习方法:决策树和随机森林。我们专注于这些方法,因为它们提供了高度的可解释性。

方法

我们讨论了决策树和随机森林方法的基本算法,并介绍了一个使用生活方式干预和老年人独立(LIFE)研究数据为严重跌倒伤害开发预测模型的教程。

结果

决策树是一种产生类似于流程图的模型的机器学习方法。随机森林由许多决策树组成,其结果被聚合。在教程示例中,我们讨论了这些模型的评估指标和解释。使用来自 LIFE 研究的数据进行说明,严重跌倒伤害的预测模型最多为中等(决策树的接收者操作特征曲线下面积为 0.54,随机森林为 0.66)。

结论

机器学习方法为老龄化结果建模提供了一种替代传统方法,但应合理使用并仔细描述输出。模型应由临床专家进行评估,以确保与临床实践的兼容性。

相似文献

3
Using Machine Learning to Make Predictions in Patients Who Fall.使用机器学习预测跌倒患者的情况。
J Surg Res. 2021 Jan;257:118-127. doi: 10.1016/j.jss.2020.07.047. Epub 2020 Aug 18.

引用本文的文献

本文引用的文献

1
Machine Learning in Medicine.医学中的机器学习
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
2
Machine Learning in Aging Research.衰老研究中的机器学习
J Gerontol A Biol Sci Med Sci. 2019 Nov 13;74(12):1901-1902. doi: 10.1093/gerona/glz074.
4
An extensive experimental survey of regression methods.回归方法的广泛实验调查。
Neural Netw. 2019 Mar;111:11-34. doi: 10.1016/j.neunet.2018.12.010. Epub 2018 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验