Suppr超能文献

利用机器学习方法预测纳米颗粒的毒性。

Toxicity prediction of nanoparticles using machine learning approaches.

机构信息

Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran; Health Information Management Research Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Toxicology. 2024 Jan;501:153697. doi: 10.1016/j.tox.2023.153697. Epub 2023 Dec 14.

Abstract

Nanoparticle toxicity analysis is critical for evaluating the safety of nanomaterials due to their potential harm to the biological system. However, traditional experimental methods for evaluating nanoparticle toxicity are expensive and time-consuming. As an alternative approach, machine learning offers a solution for predicting cellular responses to nanoparticles. This study focuses on developing ML models for nanoparticle toxicity prediction. The training dataset used for building these models includes the physicochemical properties of nanoparticles, exposure conditions, and cellular responses of different cell lines. The impact of each parameter on cell death was assessed using the Gini index. Five classifiers, namely Decision Tree, Random Forest, Support Vector Machine, Naïve Bayes, and Artificial Neural Network, were employed to predict toxicity. The models' performance was compared based on accuracy, sensitivity, specificity, area under the curve, F measure, K-fold validation, and classification error. The Gini index indicated that cell line, exposure dose, and tissue are the most influential factors in cell death. Among the models tested, Random Forest exhibited the highest performance in the given dataset. Other models demonstrated lower performance compared to Random Forest. Researchers can utilize the Random Forest model to predict nanoparticle toxicity, resulting in cost and time savings for toxicity analysis.

摘要

纳米颗粒毒性分析对于评估纳米材料的安全性至关重要,因为它们可能对生物系统造成潜在危害。然而,传统的评估纳米颗粒毒性的实验方法既昂贵又耗时。作为一种替代方法,机器学习为预测纳米颗粒对细胞的反应提供了一种解决方案。本研究专注于开发用于纳米颗粒毒性预测的 ML 模型。用于构建这些模型的训练数据集包括纳米颗粒的物理化学特性、暴露条件和不同细胞系的细胞反应。使用基尼指数评估每个参数对细胞死亡的影响。采用决策树、随机森林、支持向量机、朴素贝叶斯和人工神经网络这五种分类器来预测毒性。根据准确性、灵敏度、特异性、曲线下面积、F 度量、K 折验证和分类误差对模型性能进行了比较。基尼指数表明,细胞系、暴露剂量和组织是细胞死亡的最具影响力的因素。在测试的模型中,随机森林在给定数据集上表现出最高的性能。其他模型的性能与随机森林相比有所降低。研究人员可以利用随机森林模型来预测纳米颗粒毒性,从而节省毒性分析的成本和时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验