Suppr超能文献

不同RNA聚合酶I复合物的动态组装调节核糖体DNA转录。

The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription.

作者信息

Torreira Eva, Louro Jaime Alegrio, Pazos Irene, González-Polo Noelia, Gil-Carton David, Duran Ana Garcia, Tosi Sébastien, Gallego Oriol, Calvo Olga, Fernández-Tornero Carlos

机构信息

IPSBB Unit, Centro de Investigaciones Biológicas, Madrid, Spain.

Institute for Research in Biomedicine, Barcelona, Spain.

出版信息

Elife. 2017 Mar 6;6:e20832. doi: 10.7554/eLife.20832.

Abstract

Cell growth requires synthesis of ribosomal RNA by RNA polymerase I (Pol I). Binding of initiation factor Rrn3 activates Pol I, fostering recruitment to ribosomal DNA promoters. This fundamental process must be precisely regulated to satisfy cell needs at any time. We present in vivo evidence that, when growth is arrested by nutrient deprivation, cells induce rapid clearance of Pol I-Rrn3 complexes, followed by the assembly of inactive Pol I homodimers. This dual repressive mechanism reverts upon nutrient addition, thus restoring cell growth. Moreover, Pol I dimers also form after inhibition of either ribosome biogenesis or protein synthesis. Our mutational analysis, based on the electron cryomicroscopy structures of monomeric Pol I alone and in complex with Rrn3, underscores the central role of subunits A43 and A14 in the regulation of differential Pol I complexes assembly and subsequent promoter association.

摘要

细胞生长需要RNA聚合酶I(Pol I)合成核糖体RNA。起始因子Rrn3的结合激活Pol I,促进其募集到核糖体DNA启动子上。这一基本过程必须精确调控,以随时满足细胞需求。我们提供了体内证据,表明当营养剥夺导致生长停滞时,细胞会诱导Pol I-Rrn3复合物的快速清除,随后组装成无活性的Pol I同型二聚体。这种双重抑制机制在添加营养后逆转,从而恢复细胞生长。此外,在核糖体生物合成或蛋白质合成受到抑制后,也会形成Pol I二聚体。我们基于单体Pol I及其与Rrn3复合物的冷冻电镜结构进行的突变分析,强调了亚基A43和A14在调控Pol I复合物差异组装及随后启动子结合中的核心作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3daf/5362265/3f7e9f35f35f/elife-20832-fig1.jpg

相似文献

4
RNA polymerase I-Rrn3 complex at 4.8 Å resolution.
Nat Commun. 2016 Jul 15;7:12129. doi: 10.1038/ncomms12129.
5
Ccr4-not regulates RNA polymerase I transcription and couples nutrient signaling to the control of ribosomal RNA biogenesis.
PLoS Genet. 2015 Mar 27;11(3):e1005113. doi: 10.1371/journal.pgen.1005113. eCollection 2015 Mar.
6
Spt6 Is Essential for rRNA Synthesis by RNA Polymerase I.
Mol Cell Biol. 2015 Jul;35(13):2321-31. doi: 10.1128/MCB.01499-14. Epub 2015 Apr 27.
7
RNA polymerase I remains intact without subunit exchange through multiple rounds of transcription in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15112-7. doi: 10.1073/pnas.0406746101. Epub 2004 Oct 11.
8
Yeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly.
J Biol Chem. 2011 May 27;286(21):18825-33. doi: 10.1074/jbc.M110.202119. Epub 2011 Apr 5.
9
Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth.
Genes Dev. 2011 Oct 1;25(19):2093-105. doi: 10.1101/gad.17363311. Epub 2011 Sep 22.

引用本文的文献

4
Rippling life on a dormant planet: hibernation of ribosomes, RNA polymerases, and other essential enzymes.
Front Microbiol. 2024 May 6;15:1386179. doi: 10.3389/fmicb.2024.1386179. eCollection 2024.
6
The P4-ATPase Drs2 interacts with and stabilizes the multisubunit tethering complex TRAPPIII in yeast.
EMBO Rep. 2023 May 4;24(5):e56134. doi: 10.15252/embr.202256134. Epub 2023 Mar 16.
7
Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes.
Nat Rev Mol Cell Biol. 2023 Jun;24(6):414-429. doi: 10.1038/s41580-022-00573-9. Epub 2023 Feb 2.
9
The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans.
Life Sci Alliance. 2022 Sep 1;5(11). doi: 10.26508/lsa.202201568. Print 2022 Nov.
10

本文引用的文献

1
The In Vivo Architecture of the Exocyst Provides Structural Basis for Exocytosis.
Cell. 2017 Jan 26;168(3):400-412.e18. doi: 10.1016/j.cell.2017.01.004.
2
Molecular Structures of Transcribing RNA Polymerase I.
Mol Cell. 2016 Dec 15;64(6):1135-1143. doi: 10.1016/j.molcel.2016.11.013. Epub 2016 Nov 17.
3
Structure of RNA polymerase I transcribing ribosomal DNA genes.
Nature. 2016 Dec 22;540(7634):607-610. doi: 10.1038/nature20561. Epub 2016 Nov 14.
4
RNA polymerase I-Rrn3 complex at 4.8 Å resolution.
Nat Commun. 2016 Jul 15;7:12129. doi: 10.1038/ncomms12129.
6
Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy.
J Struct Biol. 2016 Jul;195(1):93-9. doi: 10.1016/j.jsb.2016.04.010. Epub 2016 Apr 20.
7
Alignment of direct detection device micrographs using a robust Optical Flow approach.
J Struct Biol. 2015 Mar;189(3):163-76. doi: 10.1016/j.jsb.2015.02.001. Epub 2015 Feb 12.
8
Architecture of the RNA polymerase II-Mediator core initiation complex.
Nature. 2015 Feb 19;518(7539):376-80. doi: 10.1038/nature14229. Epub 2015 Feb 4.
9
Solving the RNA polymerase I structural puzzle.
Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2570-82. doi: 10.1107/S1399004714015788. Epub 2014 Sep 27.
10
Selective inhibition of rDNA transcription by a small-molecule peptide that targets the interface between RNA polymerase I and Rrn3.
Mol Cancer Res. 2014 Nov;12(11):1586-96. doi: 10.1158/1541-7786.MCR-14-0229. Epub 2014 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验