Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
Structural Biochemistry Group, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany.
Nat Rev Mol Cell Biol. 2023 Jun;24(6):414-429. doi: 10.1038/s41580-022-00573-9. Epub 2023 Feb 2.
One of the first biological machineries to be created seems to have been the ribosome. Since then, organisms have dedicated great efforts to optimize this apparatus. The ribosomal RNA (rRNA) contained within ribosomes is crucial for protein synthesis and maintenance of cellular function in all known organisms. In eukaryotic cells, rRNA is produced from ribosomal DNA clusters of tandem rRNA genes, whose organization in the nucleolus, maintenance and transcription are strictly regulated to satisfy the substantial demand for rRNA required for ribosome biogenesis. Recent studies have elucidated mechanisms underlying the integrity of ribosomal DNA and regulation of its transcription, including epigenetic mechanisms and a unique recombination and copy-number control system to stably maintain high rRNA gene copy number. In this Review, we disucss how the crucial maintenance of rRNA gene copy number through control of gene amplification and of rRNA production by RNA polymerase I are orchestrated. We also discuss how liquid-liquid phase separation controls the architecture and function of the nucleolus and the relationship between rRNA production, cell senescence and disease.
似乎最早出现的生物机制之一就是核糖体。从那时起,生物就致力于优化这个装置。核糖体中包含的核糖体 RNA(rRNA)对于所有已知生物的蛋白质合成和细胞功能的维持至关重要。在真核细胞中,rRNA 是由串联 rRNA 基因的核糖体 DNA 簇产生的,其在核仁中的组织、维持和转录受到严格调控,以满足核糖体生物发生所需的大量 rRNA 需求。最近的研究阐明了核糖体 DNA 完整性和转录调控的机制,包括表观遗传机制以及独特的重组和拷贝数控制系统,以稳定维持高 rRNA 基因拷贝数。在这篇综述中,我们讨论了如何通过控制基因扩增和 RNA 聚合酶 I 产生 rRNA 来协调 rRNA 基因拷贝数的关键维持。我们还讨论了液-液相分离如何控制核仁的结构和功能,以及 rRNA 产生、细胞衰老和疾病之间的关系。