Gantz Stephanie C, Bean Bruce P
Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
Neuron. 2017 Mar 22;93(6):1375-1387.e2. doi: 10.1016/j.neuron.2017.02.025. Epub 2017 Mar 2.
The major endocannabinoid in the mammalian brain is the bioactive lipid 2-arachidonoylglycerol (2-AG). The best-known effects of 2-AG are mediated by G-protein-coupled cannabinoid receptors. In principle, 2-AG could modify neuronal excitability by acting directly on ion channels, but such mechanisms are poorly understood. Using a preparation of dissociated mouse midbrain dopamine neurons to isolate effects on intrinsic excitability, we found that 100 nM 2-AG accelerated pacemaking and steepened the frequency-current relationship for burst-like firing. In voltage-clamp experiments, 2-AG reduced A-type potassium current (I) through a cannabinoid receptor-independent mechanism mimicked by arachidonic acid, which has no activity on cannabinoid receptors. Activation of orexin, neurotensin, and metabotropic glutamate G-linked receptors mimicked the effects of exogenous 2-AG and their actions were prevented by inhibiting the 2-AG-synthesizing enzyme diacylglycerol lipase α. The results show that 2-AG and related lipid signaling molecules can directly tune neuronal excitability in a cell-autonomous manner by modulating I.
哺乳动物大脑中的主要内源性大麻素是生物活性脂质2-花生四烯酸甘油酯(2-AG)。2-AG最广为人知的作用是由G蛋白偶联大麻素受体介导的。原则上,2-AG可以通过直接作用于离子通道来改变神经元兴奋性,但人们对这类机制了解甚少。我们使用解离的小鼠中脑多巴胺神经元制备物来分离对内在兴奋性的影响,发现100 nM的2-AG加快了自发放电频率,并使爆发样放电的频率-电流关系变陡。在电压钳实验中,2-AG通过一种不依赖大麻素受体的机制降低了A型钾电流(I),该机制可被对大麻素受体无活性的花生四烯酸模拟。食欲素、神经降压素和代谢型谷氨酸G蛋白偶联受体的激活模拟了外源性2-AG的作用,并且通过抑制2-AG合成酶二酰甘油脂肪酶α可阻止它们的作用。结果表明,2-AG和相关脂质信号分子可通过调节I以细胞自主方式直接调节神经元兴奋性。