Suppr超能文献

黑曲霉阿魏酸脱羧酶催化反应的机理洞察:一项量子力学/分子力学研究

Mechanistic insights into the catalytic reaction of ferulic acid decarboxylase from Aspergillus niger: a QM/MM study.

作者信息

Tian Ge, Liu Yongjun

机构信息

School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

出版信息

Phys Chem Chem Phys. 2017 Mar 15;19(11):7733-7742. doi: 10.1039/c6cp08811b.

Abstract

Ubiquinone plays a pivotal role in the aerobic cellular respiratory electron transport chain, whereas ferulic acid decarboxylase (FDC) is involved in the biosynthesis of ubiquinone precursor. Recently, the complete crystal structure of FDC (based on the co-expression of the A. niger fdc1 gene in E. coli with the associated ubix gene from E. coli) at high resolution was reported. Herein, the detailed catalytic non-oxidative decarboxylation mechanism of FDC has been investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Calculation results indicate that, after the 1,3-dipolar cycloaddition of the substrate and cofactor, the carboxylic group can readily split off from the adduct, and the overall energy barrier of the whole catalytic reaction is 23.5 kcal mol. According to the energy barrier analysis, the protonation step is rate-limiting. The conserved protonated Glu282 is suggested to be the proton donor through a "water bridge". Besides, two cases, that is, the generated CO escapes from the active site or remains in the active site, were considered. It was found that the prolonged leaving of CO can facilitate the protonation of the intermediate. In particular, our calculations shed light on the detailed function of both cofactors prFMN and prFMN in the decarboxylation step. The cofactor prFMN is the catalytically relevant species compared with prFMN.

摘要

泛醌在有氧细胞呼吸电子传递链中起关键作用,而阿魏酸脱羧酶(FDC)参与泛醌前体的生物合成。最近,有报道称已获得了FDC的高分辨率完整晶体结构(基于黑曲霉fdc1基因与大肠杆菌相关ubix基因在大肠杆菌中的共表达)。在此,通过量子力学/分子力学(QM/MM)相结合的方法研究了FDC详细的催化非氧化脱羧机制。计算结果表明,底物与辅因子发生1,3 -偶极环加成反应后,羧基可轻易从加合物上脱离,整个催化反应的总能量屏障为23.5千卡/摩尔。根据能量屏障分析,质子化步骤是限速步骤。保守的质子化Glu282被认为通过“水桥”作为质子供体。此外,还考虑了两种情况,即生成的CO从活性位点逸出或保留在活性位点。结果发现,CO的长时间离去可促进中间体的质子化。特别是,我们的计算揭示了辅因子prFMN和prFMN在脱羧步骤中的详细功能。与prFMN相比,辅因子prFMN是催化相关物种。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验