Payne Karl A P, White Mark D, Fisher Karl, Khara Basile, Bailey Samuel S, Parker David, Rattray Nicholas J W, Trivedi Drupad K, Goodacre Royston, Beveridge Rebecca, Barran Perdita, Rigby Stephen E J, Scrutton Nigel S, Hay Sam, Leys David
Centre for Synthetic Biology of Fine and Speciality Chemicals, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
Innovation/Biodomain, Shell International Exploration and Production, Westhollow Technology Center, 3333 Highway 6 South, Houston, Texas 77082-3101, USA.
Nature. 2015 Jun 25;522(7557):497-501. doi: 10.1038/nature14560. Epub 2015 Jun 17.
The bacterial ubiD and ubiX or the homologous fungal fdc1 and pad1 genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone (also known as coenzyme Q) biosynthesis or microbial biodegradation of aromatic compounds, respectively. Despite biochemical studies on individual gene products, the composition and cofactor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear. Here we show that Fdc1 is solely responsible for the reversible decarboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesized by the associated UbiX/Pad1. Atomic resolution crystal structures reveal that two distinct isomers of the oxidized cofactor can be observed, an isoalloxazine N5-iminium adduct and a N5 secondary ketimine species with markedly altered ring structure, both having azomethine ylide character. Substrate binding positions the dipolarophile enoic acid group directly above the azomethine ylide group. The structure of a covalent inhibitor-cofactor adduct suggests that 1,3-dipolar cycloaddition chemistry supports reversible decarboxylation in these enzymes. Although 1,3-dipolar cycloaddition is commonly used in organic chemistry, we propose that this presents the first example, to our knowledge, of an enzymatic 1,3-dipolar cycloaddition reaction. Our model for Fdc1/UbiD catalysis offers new routes in alkene hydrocarbon production or aryl (de)carboxylation.
细菌的ubiD和ubiX基因或同源的真菌fdc1和pad1基因与芳香族底物的非氧化可逆脱羧反应有关,分别在细菌泛醌(也称为辅酶Q)生物合成或芳香族化合物的微生物生物降解中起关键作用。尽管对单个基因产物进行了生化研究,但负责体内脱羧酶活性的酶的组成和辅因子需求仍不清楚。在这里,我们表明Fdc1单独负责可逆脱羧酶活性,并且它需要一种新型辅因子:由相关的UbiX/Pad1合成的异戊烯基化黄素。原子分辨率晶体结构表明,可以观察到氧化辅因子的两种不同异构体,一种异咯嗪N5-亚胺鎓加合物和一种具有明显改变的环结构的N5仲酮亚胺物种,两者都具有甲亚胺叶立德特征。底物结合将亲偶极烯酸基团直接定位在甲亚胺叶立德基团上方。共价抑制剂-辅因子加合物的结构表明,1,3-偶极环加成化学支持这些酶中的可逆脱羧反应。虽然1,3-偶极环加成在有机化学中常用,但据我们所知,我们提出这是酶促1,3-偶极环加成反应的第一个例子。我们的Fdc1/UbiD催化模型为烯烃生产或芳基(脱)羧化提供了新途径。