Marshall Stephen A, Fisher Karl, Ní Cheallaigh Aisling, White Mark D, Payne Karl A P, Parker D A, Rigby Stephen E J, Leys David
From the Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street Manchester, M1 7DN, United Kingdom and.
Innovation/Biodomain, Shell International Exploration and Production, Westhollow Technology Center, Houston, Texas 77082-3101.
J Biol Chem. 2017 Mar 17;292(11):4623-4637. doi: 10.1074/jbc.M116.762732. Epub 2017 Jan 5.
The activity of the reversible decarboxylase enzyme Fdc1 is dependent on prenylated FMN (prFMN), a recently discovered cofactor. The oxidized prFMN supports a 1,3-dipolar cycloaddition mechanism that underpins reversible decarboxylation. Fdc1 is a distinct member of the UbiD family of enzymes, with the canonical UbiD catalyzing the (de)carboxylation of -hydroxybenzoic acid-type substrates. Here we show that the UbiD enzyme, which is implicated in ubiquinone biosynthesis, cannot be isolated in an active holoenzyme form despite the fact active holoFdc1 is readily obtained. Formation of holoUbiD requires reconstitution of the apoUbiD with reduced prFMN. Furthermore, although the Fdc1 apoenzyme can be readily reconstituted and activated, oxidation to the mature prFMN cofactor stalls at formation of a radical prFMN species in holoUbiD. Further oxidative maturation occurs only at alkaline pH, suggesting a proton-coupled electron transfer precedes formation of the fully oxidized prFMN. Crystal structures of holoUbiD reveal a relatively open active site potentially occluded from solvent through domain motion. The presence of a prFMN sulfite-adduct in one of the UbiD crystal structures confirms oxidative maturation does occur at ambient pH on a slow time scale. Activity could not be detected for a range of putative -hydroxybenzoic acid substrates tested. However, the lack of an obvious hydrophobic binding pocket for the octaprenyl tail of the proposed ubiquinone precursor substrate does suggest UbiD might act on a non-prenylated precursor. Our data reveals an unexpected variation occurs in domain mobility, prFMN binding, and maturation by the UbiD enzyme family.
可逆脱羧酶Fdc1的活性依赖于异戊二烯化黄素单核苷酸(prFMN),这是一种最近发现的辅因子。氧化态的prFMN支持一种1,3 - 偶极环加成机制,该机制是可逆脱羧作用的基础。Fdc1是UbiD酶家族的一个独特成员,典型的UbiD催化对羟基苯甲酸型底物的(脱)羧化反应。在这里我们表明,尽管很容易获得有活性的全酶形式的holoFdc1,但参与泛醌生物合成的UbiD酶却不能以有活性的全酶形式分离出来。holoUbiD的形成需要用还原态的prFMN对脱辅基UbiD进行重组。此外,尽管Fdc1脱辅酶可以很容易地重组并激活,但氧化成成熟的prFMN辅因子在holoUbiD中形成自由基prFMN物种时停滞不前。进一步的氧化成熟仅在碱性pH下发生,这表明质子耦合电子转移先于完全氧化的prFMN的形成。holoUbiD的晶体结构显示出一个相对开放的活性位点,可能通过结构域运动与溶剂隔绝。UbiD晶体结构之一中存在prFMN亚硫酸盐加合物,证实了氧化成熟确实在环境pH下以较慢的时间尺度发生。对于一系列测试的假定对羟基苯甲酸底物,未检测到活性。然而,对于所提出的泛醌前体底物的八异戊二烯基尾缺乏明显的疏水结合口袋,这确实表明UbiD可能作用于未异戊二烯化的前体。我们的数据揭示了UbiD酶家族在结构域迁移、prFMN结合和成熟方面发生了意想不到的变化。