Suppr超能文献

VoroMQA:利用原子间接触面积评估蛋白质结构质量

VoroMQA: Assessment of protein structure quality using interatomic contact areas.

作者信息

Olechnovič Kliment, Venclovas Česlovas

机构信息

Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.

Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.

出版信息

Proteins. 2017 Jun;85(6):1131-1145. doi: 10.1002/prot.25278. Epub 2017 Mar 24.

Abstract

In the absence of experimentally determined protein structure many biological questions can be addressed using computational structural models. However, the utility of protein structural models depends on their quality. Therefore, the estimation of the quality of predicted structures is an important problem. One of the approaches to this problem is the use of knowledge-based statistical potentials. Such methods typically rely on the statistics of distances and angles of residue-residue or atom-atom interactions collected from experimentally determined structures. Here, we present VoroMQA (Voronoi tessellation-based Model Quality Assessment), a new method for the estimation of protein structure quality. Our method combines the idea of statistical potentials with the use of interatomic contact areas instead of distances. Contact areas, derived using Voronoi tessellation of protein structure, are used to describe and seamlessly integrate both explicit interactions between protein atoms and implicit interactions of protein atoms with solvent. VoroMQA produces scores at atomic, residue, and global levels, all in the fixed range from 0 to 1. The method was tested on the CASP data and compared to several other single-model quality assessment methods. VoroMQA showed strong performance in the recognition of the native structure and in the structural model selection tests, thus demonstrating the efficacy of interatomic contact areas in estimating protein structure quality. The software implementation of VoroMQA is freely available as a standalone application and as a web server at http://bioinformatics.lt/software/voromqa. Proteins 2017; 85:1131-1145. © 2017 Wiley Periodicals, Inc.

摘要

在缺乏通过实验确定的蛋白质结构的情况下,可以使用计算结构模型来解决许多生物学问题。然而,蛋白质结构模型的实用性取决于其质量。因此,预测结构质量的评估是一个重要问题。解决这个问题的方法之一是使用基于知识的统计势。这类方法通常依赖于从实验确定的结构中收集的残基-残基或原子-原子相互作用的距离和角度统计数据。在此,我们提出了VoroMQA(基于Voronoi镶嵌的模型质量评估),一种用于评估蛋白质结构质量的新方法。我们的方法将统计势的概念与使用原子间接触面积而非距离相结合。通过对蛋白质结构进行Voronoi镶嵌得到的接触面积,用于描述并无缝整合蛋白质原子之间的明确相互作用以及蛋白质原子与溶剂的隐含相互作用。VoroMQA在原子、残基和全局水平上产生分数,所有分数都在0到1的固定范围内。该方法在CASP数据上进行了测试,并与其他几种单模型质量评估方法进行了比较。VoroMQA在天然结构识别和结构模型选择测试中表现出色,从而证明了原子间接触面积在评估蛋白质结构质量方面的有效性。VoroMQA的软件实现可作为独立应用程序免费获取,也可通过网页服务器在http://bioinformatics.lt/software/voromqa上使用。《蛋白质》2017年;85:1131 - 1145。© 2017威利期刊公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验