Suppr超能文献

$\mathcal{S}$ able:通过一种强大且通用的预训练范式弥合蛋白质结构理解方面的差距。

$\mathcal{S}$ able: bridging the gap in protein structure understanding with an empowering and versatile pre-training paradigm.

作者信息

Li Jiashan, Chen Xi, Huang He, Zeng Mingliang, Yu Jingcheng, Gong Xinqi, Ye Qiwei

机构信息

Institute for Mathematical Sciences, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China.

Bio Computing Center, Beijing Academy of Artificial Intelligence, 150 Chengfu Road, Beijing 100084, China.

出版信息

Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf120.

Abstract

Protein pre-training has emerged as a transformative approach for solving diverse biological tasks. While many contemporary methods focus on sequence-based language models, recent findings highlight that protein sequences alone are insufficient to capture the extensive information inherent in protein structures. Recognizing the crucial role of protein structure in defining function and interactions, we introduce $\mathcal{S}$able, a versatile pre-training model designed to comprehensively understand protein structures. $\mathcal{S}$able incorporates a novel structural encoding mechanism that enhances inter-atomic information exchange and spatial awareness, combined with robust pre-training strategies and lightweight decoders optimized for specific downstream tasks. This approach enables $\mathcal{S}$able to consistently outperform existing methods in tasks such as generation, classification, and regression, demonstrating its superior capability in protein structure representation. The code and models can be accessed via GitHub repository at https://github.com/baaihealth/Sable.

摘要

蛋白质预训练已成为解决各种生物学任务的一种变革性方法。虽然许多当代方法专注于基于序列的语言模型,但最近的研究结果表明,仅蛋白质序列不足以捕捉蛋白质结构中固有的广泛信息。认识到蛋白质结构在定义功能和相互作用中的关键作用,我们引入了Sable,这是一种通用的预训练模型,旨在全面理解蛋白质结构。Sable采用了一种新颖的结构编码机制,增强了原子间信息交换和空间感知能力,并结合了强大的预训练策略和针对特定下游任务优化的轻量级解码器。这种方法使Sable在生成、分类和回归等任务中始终优于现有方法,证明了其在蛋白质结构表示方面的卓越能力。代码和模型可通过GitHub仓库https://github.com/baaihealth/Sable访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3109/11957296/6a2702907da8/bbaf120f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验