Suppr超能文献

用于治疗性基因编辑的CRISPR/Cas9体内递送:进展与挑战

In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges.

作者信息

Mout Rubul, Ray Moumita, Lee Yi-Wei, Scaletti Federica, Rotello Vincent M

机构信息

Department of Chemistry, University of Massachusetts , 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.

出版信息

Bioconjug Chem. 2017 Apr 19;28(4):880-884. doi: 10.1021/acs.bioconjchem.7b00057. Epub 2017 Mar 17.

Abstract

The successful use of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based gene editing for therapeutics requires efficient in vivo delivery of the CRISPR components. There are, however, major challenges on the delivery front. In this Topical Review, we will highlight recent developments in CRISPR delivery, and we will present hurdles that still need to be overcome to achieve effective in vivo editing.

摘要

将基于成簇规律间隔短回文重复序列(CRISPR)/Cas9的基因编辑成功用于治疗需要在体内高效递送CRISPR组件。然而,在递送方面存在重大挑战。在本专题综述中,我们将重点介绍CRISPR递送的最新进展,并阐述为实现有效的体内编辑仍需克服的障碍。

相似文献

1
In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges.
Bioconjug Chem. 2017 Apr 19;28(4):880-884. doi: 10.1021/acs.bioconjchem.7b00057. Epub 2017 Mar 17.
2
CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
Chem Rev. 2017 Aug 9;117(15):9874-9906. doi: 10.1021/acs.chemrev.6b00799. Epub 2017 Jun 22.
3
Delivery approaches for CRISPR/Cas9 therapeutics in vivo: advances and challenges.
Expert Opin Drug Deliv. 2018 Sep;15(9):905-913. doi: 10.1080/17425247.2018.1517746. Epub 2018 Sep 12.
4
Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing.
J Control Release. 2016 Dec 28;244(Pt A):83-97. doi: 10.1016/j.jconrel.2016.11.014. Epub 2016 Nov 16.
5
CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
Cancer Lett. 2019 Apr 10;447:48-55. doi: 10.1016/j.canlet.2019.01.017. Epub 2019 Jan 23.
6
CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
J Control Release. 2016 Dec 28;244(Pt B):139-148. doi: 10.1016/j.jconrel.2016.08.002. Epub 2016 Aug 4.
7
[Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
Zhonghua Shao Shang Za Zhi. 2018 Apr 20;34(4):253-256. doi: 10.3760/cma.j.issn.1009-2587.2018.04.013.
8
Viral Delivery Systems for CRISPR.
Viruses. 2019 Jan 4;11(1):28. doi: 10.3390/v11010028.
9
CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.
Korean J Intern Med. 2017 Jan;32(1):42-61. doi: 10.3904/kjim.2016.198. Epub 2017 Jan 1.
10
Synthetic multi-layer nanoparticles for CRISPR-Cas9 genome editing.
Adv Drug Deliv Rev. 2021 Jan;168:55-78. doi: 10.1016/j.addr.2020.03.001. Epub 2020 Mar 5.

引用本文的文献

2
CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer's disease: progress and prospects.
Front Cell Neurosci. 2025 Apr 7;19:1578138. doi: 10.3389/fncel.2025.1578138. eCollection 2025.
5
Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine.
3 Biotech. 2025 Jan;15(1):17. doi: 10.1007/s13205-024-04186-1. Epub 2024 Dec 19.
6
A bibliometric analysis of gene editing and amyotrophic lateral sclerosis (from 2004 to 2024).
Front Neurosci. 2024 Nov 26;18:1499025. doi: 10.3389/fnins.2024.1499025. eCollection 2024.
7
The potential of HBV cure: an overview of CRISPR-mediated HBV gene disruption.
Front Genome Ed. 2024 Oct 9;6:1467449. doi: 10.3389/fgeed.2024.1467449. eCollection 2024.
8
CRISPR technology in human diseases.
MedComm (2020). 2024 Jul 29;5(8):e672. doi: 10.1002/mco2.672. eCollection 2024 Aug.
9
Revitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing.
Front Oncol. 2024 Jun 10;14:1383062. doi: 10.3389/fonc.2024.1383062. eCollection 2024.

本文引用的文献

1
Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.
ACS Nano. 2017 Mar 28;11(3):2452-2458. doi: 10.1021/acsnano.6b07600. Epub 2017 Jan 31.
3
CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes.
Cell. 2017 Jan 12;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044. Epub 2016 Nov 17.
4
A multifunctional AAV-CRISPR-Cas9 and its host response.
Nat Methods. 2016 Oct;13(10):868-74. doi: 10.1038/nmeth.3993. Epub 2016 Sep 5.
5
Engineering Delivery Vehicles for Genome Editing.
Annu Rev Chem Biomol Eng. 2016 Jun 7;7:637-62. doi: 10.1146/annurev-chembioeng-080615-034711. Epub 2016 Apr 21.
6
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
Nature. 2016 Jan 28;529(7587):490-5. doi: 10.1038/nature16526. Epub 2016 Jan 6.
7
In vivo gene editing in dystrophic mouse muscle and muscle stem cells.
Science. 2016 Jan 22;351(6271):407-411. doi: 10.1126/science.aad5177. Epub 2015 Dec 31.
8
In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.
Science. 2016 Jan 22;351(6271):403-7. doi: 10.1126/science.aad5143. Epub 2015 Dec 31.
9
Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy.
Science. 2016 Jan 22;351(6271):400-3. doi: 10.1126/science.aad5725. Epub 2015 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验