Suppr超能文献

借助纳米医学提高CRISPR/Cas9基因编辑机制作为癌症治疗工具的应用效果。

Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine.

作者信息

Fatima Hina, Singh Dimple, Muhammad Huzaifa, Acharya Swati, Aziz Mohammad Azhar

机构信息

Polymer and Process Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand, 247001 India.

College of Medicine, Alfaisal University, 11533 Riyadh, Saudi Arabia.

出版信息

3 Biotech. 2025 Jan;15(1):17. doi: 10.1007/s13205-024-04186-1. Epub 2024 Dec 19.

Abstract

CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-associated protein 9) has revolutionized gene editing tools and paved the way for innovations in medical research for disease diagnosis and treatment. However, better specificity and efficient delivery of this gene machinery make it challenging to successfully edit genes for treating various diseases. This is mainly due to cellular barriers, instability in biological environments, and various off-target effects that prohibit safe and efficient delivery under in vivo conditions. This review examines several delivery modes [plasmid, mRNA, RNP (ribonucleoprotein)] and methods for the CRISPR-Cas9 system delivery, focusing on its potential applications in cancer therapy. Biocompatibility and cytotoxicity are crucial factors determining their safe and effective use. Various nanomaterials have been reviewed for their biocompatibility, limitations, and challenges in treating cancer. Among the reviewed nanoparticles, lipid nanoparticles (LNPs) stand out for their biocompatibility due to their biomimetic lipid bilayer that effectively delivers CRISPR/Cas9 cargoes while reducing toxicity. We discuss challenges in in vivo delivery and associated findings such as encapsulation, target delivery, controlled release, and endosomal escape. Future directions involve addressing limitations and adapting CRISPR-Cas9 for clinical trials, ensuring its safe and effective use.

摘要

CRISPR-Cas9(成簇规律间隔短回文重复序列相关蛋白9)彻底改变了基因编辑工具,为疾病诊断和治疗的医学研究创新铺平了道路。然而,这种基因机制更好的特异性和高效递送使得成功编辑用于治疗各种疾病的基因具有挑战性。这主要是由于细胞屏障、生物环境中的不稳定性以及各种脱靶效应,这些因素阻碍了在体内条件下的安全高效递送。本综述研究了几种递送模式[质粒、信使核糖核酸、核糖核蛋白(RNP)]以及CRISPR-Cas9系统的递送方法,重点关注其在癌症治疗中的潜在应用。生物相容性和细胞毒性是决定其安全有效使用的关键因素。已对各种纳米材料在癌症治疗中的生物相容性、局限性和挑战进行了综述。在所综述的纳米颗粒中,脂质纳米颗粒(LNPs)因其仿生脂质双层而在生物相容性方面表现突出,该脂质双层能有效递送CRISPR/Cas9货物同时降低毒性。我们讨论了体内递送的挑战以及相关发现,如封装、靶向递送、控释和内体逃逸。未来的方向包括解决局限性并使CRISPR-Cas9适用于临床试验,确保其安全有效使用。

相似文献

1
Improving the use of CRISPR/Cas9 gene editing machinery as a cancer therapeutic tool with the help of nanomedicine.
3 Biotech. 2025 Jan;15(1):17. doi: 10.1007/s13205-024-04186-1. Epub 2024 Dec 19.
2
CRISPR/Cas9-mediated genome editing in Ganoderma lucidum: recent advances and biotechnological opportunities.
World J Microbiol Biotechnol. 2025 Jun 25;41(7):223. doi: 10.1007/s11274-025-04458-9.
3
Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.
Front Genome Ed. 2024 Jun 26;6:1399051. doi: 10.3389/fgeed.2024.1399051. eCollection 2024.
4
Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy.
Hum Gene Ther. 2024 Oct;35(19-20):781-797. doi: 10.1089/hum.2024.020.
5
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
6
7
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.
J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17.
9
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.
Acc Chem Res. 2025 Jul 1;58(13):1951-1962. doi: 10.1021/acs.accounts.5c00126. Epub 2025 Jun 9.

引用本文的文献

1
LncRNA in gastric cancer drug resistance: deciphering the therapeutic strategies.
Front Oncol. 2025 Apr 1;15:1552773. doi: 10.3389/fonc.2025.1552773. eCollection 2025.

本文引用的文献

1
Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing.
Biomaterials. 2025 Jun;317:123076. doi: 10.1016/j.biomaterials.2024.123076. Epub 2024 Dec 30.
2
3D-printed cannabidiol hollow suppositories for treatment of epilepsy.
Int J Pharm. 2025 Feb 10;670:125141. doi: 10.1016/j.ijpharm.2024.125141. Epub 2024 Dec 26.
3
Advancing mRNA Therapeutics: The Role and Future of Nanoparticle Delivery Systems.
Mol Pharm. 2024 Aug 5;21(8):3743-3763. doi: 10.1021/acs.molpharmaceut.4c00276. Epub 2024 Jul 2.
4
Revolutionizing Lung Cancer Treatment: Innovative CRISPR-Cas9 Delivery Strategies.
AAPS PharmSciTech. 2024 Jun 6;25(5):129. doi: 10.1208/s12249-024-02834-6.
5
Beyond Lipids: Exploring Advances in Polymeric Gene Delivery in the Lipid Nanoparticles Era.
Adv Mater. 2024 Aug;36(31):e2404608. doi: 10.1002/adma.202404608. Epub 2024 Jun 19.
6
Polymeric micellar nanoparticles for effective CRISPR/Cas9 genome editing in cancer.
Biomaterials. 2024 Sep;309:122573. doi: 10.1016/j.biomaterials.2024.122573. Epub 2024 Apr 17.
7
Nitrogen-Doped Carbon Dots Facilitate CRISPR/Cas for Reducing Antibiotic Resistance Genes in the Environment.
J Agric Food Chem. 2024 Feb 21;72(7):3397-3405. doi: 10.1021/acs.jafc.3c08558. Epub 2024 Feb 9.
8
Development of ionizable lipid nanoparticles and a lyophilized formulation for potent CRISPR-Cas9 delivery and genome editing.
Int J Pharm. 2024 Mar 5;652:123845. doi: 10.1016/j.ijpharm.2024.123845. Epub 2024 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验