Alexander Daniel C, Zikic Darko, Ghosh Aurobrata, Tanno Ryutaro, Wottschel Viktor, Zhang Jiaying, Kaden Enrico, Dyrby Tim B, Sotiropoulos Stamatios N, Zhang Hui, Criminisi Antonio
Centre for Medical Image Computing and Dept. Computer Science, UCL, Gower Street, London WC1E 6BT, UK.
Microsoft Research Cambridge, Cambridge, UK.
Neuroimage. 2017 May 15;152:283-298. doi: 10.1016/j.neuroimage.2017.02.089. Epub 2017 Mar 3.
This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.
本文介绍了一种名为图像质量转移(IQT)的新型计算成像技术。IQT利用机器学习将一次性实验医学成像设备中可用的丰富信息转移到来自常规采集的大量但质量较低的数据中。该过程使用匹配对来学习从低质量图像到相应高质量图像的映射。一旦学习到这些映射,它们就会增强未见过的低质量图像,例如通过提高图像分辨率或信息内容。在这里,我们使用简单的补丁回归实现和来自人类连接组计划(HCP)的独特丰富的扩散磁共振成像数据集来演示IQT。结果突出了IQT在脑连接映射和微观结构成像方面的潜在益处。在脑连接映射中,IQT从标准数据集中揭示了通常需要专门数据来重建的细连接通路。在微观结构成像中,IQT显示了从标准的“单壳”数据(一个非零b值)估计通常需要专门的多壳数据的微观结构参数图的潜力。进一步的实验显示了很强的通用性,突出了即使训练集不直接代表应用领域时IQT的益处。该概念自然地扩展到许多其他成像模态和重建问题。